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COMPUTATIONAL MODEL OF ADHESIVE SCARF
JOINTS IN TIMBER BEAMS

The subject of this paper is the general formulation of a model for scarf adhesive
Joints in timber beams within the framework of plane linear elasticity. It is assumed
that wood is orthotropic. The joint can be subjected to a complex loading state inc-
luding an axial force, a bending moment and a shear force. The joint model is given
in displacements by means of a set of four partial differential equations of the se-
cond order. Boundary conditions cater for sharp edges in the adherends. Complete
solutions to theory of elasticity equations are presented and discussed. The manner
in which the joint transmits the axial force, the bending moment and the shear force
is presented. It is shown that the scarf joint does not feature stress concentrations
and that there exists an approximate equivalence of displacements and stress states
in scarf jointed and continuous elements.

Keywords: timber beam, adhesive scarf joint, analytical model, two dimensional
displacement-stress analysis, orthotropy, linear elasticity

Introduction

The repair of timber structures including beams is of practical importance in civil
engineering. An example of this would be the replacement of a biologically-cor-
roded, damaged end section of a floor beam or a rafter. Simple methods, such as
when a new fragment is joined with the old beam by various types of wooden
plates or steel profiles, have been in use for some time. They are effective but
usually lead to a change in the external look of the elements, changes in the sta-
tic scheme and application of the materials which differ from the original ones.
Such solutions are not acceptable in historical structures, where not only are the
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architecture and decoration of great value, but also the structure itself. In such
cases, the shapes, the appearance of the structural elements, the static schemes,
materials, etc. must be preserved.

One possible solution allowing for the repair of a damaged element, while
preserving its original shape, appearance, material, strength, and static scheme,
is the use of an adhesive scarf joint (fig. 1).

b)

Adhesive

Adherend 1

Fig. 1. Adhesive scarf joints in wooden beams: a) scarf joint and its loading,
b) scarf joints in a wide beam

It is important that in the considered joint the adhesive plane is parallel to the
Y axis lying in the beam bending plane 0XY (fig. 1a). In a wide beam, a single
scarf joint would be too long, therefore multiple joints can be used to keep them
small — see fig. 1b. In such a case, it is assumed that the wide beam consists of
several narrower segments with single scarf joints and each segment transmits an
appropriate part of loading.

These types of joints are rarely used in wooden beam structures and, as tech-
nological solutions, they do not yet possess complete theoretical or experimental
documentation.

In other cases, differing from the ones described in this paper, scarf joints
are frequently used under axial tension [Erdogan, Ratawani 1971; Reddy, Sinha
1975] or in beams under bending as joints in the form of micro-dovetails (finger
joints), where the joint is perpendicular to the bending plane [Tomasiuk 1988;
Smardzewski 1996].

In this paper, the general results previously presented by Rapp are used [2010a,
2010b].
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The adhesive scarf joint model

A timber beam with a rectangular cross-section consisting of two elements with
thickness values g, and g, is considered. In general, various wood types may be
used. The adherends are connected by an adhesive scarf joint. A set of co-ordi-
nates 0XYZ is associated with the beam. The plane 0XY represents the bending
plane, according to fig. 1. The adhesive is a plane rectangle forming the angle ¢_
with the bending plane 0XY. The adhesive projection on the plane 0XY is the
rectangle ABCD with dimensions 2/_x ZZy (fig. 2).
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Fig. 2. The adhesive scarf joint model

It is assumed that stresses across the adherend thickness are constant and form
plane stress states parallel to the plane 0XY. Hence, the adherends are considered
as plane stress elements parallel to the plane 0XY. The adherend thickness
is measured in the direction normal to the plane 0XY. In the joint zone, the adhe-
rend thickness values g (x) and g,(x) vary linearly from zero to g, and g, along the
X axis and are constant along the Y axis.

g@=Trx+ll g @=-Dxs (1)

The adhesive thickness ¢ is measured in the direction normal to its plane.
The adhesive is modelled as an isotropic linearly-elastic medium with Young’s
modulus £, the shear modulus G and Poisson’s ratio v, where £ = 2(1 +v )G .
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Stresses in the adhesive are defined as interactions between adherend 1 and the
adhesive. There are shear stresses 7, =7 (x, y) and 7, = 7 (x, y) in the adhesive plane
and the stress o, = 0, (x, y) normal to the adhesive plane The stress 7_is parallel to
the plane 0XZ, and the stress 7 is parallel to the Y axis (fig. 3).

Adhesive

Adherend 2

(
1
|
|
|
|
I
|
|
1
I
|
|
[

Sharp edge

Fig. 3. Stresses in the adhesive

It is assumed that the stresses in the adhesive are constant across its thickness.
The stresses presented in fig. 3 are positive. Due to the action of the shear stresses
t_and 7, a shear deformation in the adhesive occurs. This leads to relative dis-
placements of layers in the adhesive in the direction parallel to the adhesive plane.
The stress o, leads to axial strains normal to the adhesive plane.

The displacements in adherends 1 and 2 of the scarf joint are defined by
the functions u, = u,(x, y) and u, = u,(x, y) along the X axis and the functions
v, = v,(x, y) and v, = v,(x, y) along the Y axis. The displacements u, u,, v , and v,
are positive when they coincide with the positive orientation of the X and Y axes.
It is assumed that the functions u , u,, v,, and v, are C? — continuous with respect
to variables x and y.

In the following, the functions of the displacements u , u,, v,, and v, are con-
sidered as unknowns and all the quantities related to the adhesive joint are ex-
pressed in their terms.

The loading of the adhesive joint can be represented by forces parallel
to the plane 0XY distributed along the edges of the adherends. The loading is
positive when its orientation coincides with the positive orientation of the X
and Y axes.

There are axial forces, bending moments and shear forces in the beam cross-
-sections. They lead to the axial stresses p, and p, distributed linearly, and the
shear stresses p, and p, with a parabolic distribution. Hence, it is assumed that
the edges of the adherends can be loaded by axial forces, bending moments and
shear forces. The positive orientation of these forces and the corresponding stress
distributions are presented in fig. 4. The joint loading must remain in equilibrium.
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Fig. 4. Loading of the scarf joint adherends
Constitutive equations for the adherends

It is assumed that generally the adherends are made of different wood types,
both orthotropic, and that the main axes of orthotropy coincide with the X and Y
axes. In the plane stress state, the constitutive relations for adherends 1 and 2 are
given by:

e =L o Ve 5
W= Tk E, Ty ()
kax
Ey =~ O +—o0O
hy E. - E, Ty 3)
L 4
Ve Gp, exy “4)

where: k =1 for adherend 1 and &k = 2 for adherend 2.

An orthotropic material in the plane stress state is described by five material
constants: two coefficients of longitudinal elasticity £, and E ,p One shear modulus
of the set of equations (2) — (3) is symmetric, i.e. G, and two Poisson’s ratios Vi
andv, . Itis assumed that the matrix of coefficients:
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kax _ kay

holds. Thus, four out of five material parameters are independent.
Having solved the set of equations (2) — (4) with respect to stresses, one gets:

o, = Ekx ot kayEkx (6)
1=V Vign 1=V Vi
Vi E
o, =—2N ¢ 4 b ¢ 7
ky ke ky (7
1=V Vi 1=V Vigx
Tkxy = kayykxy (8)

where: k=1 for adherend 1 and & = 2 for adherend 2.

The material parameters £, E, G, , v, andv, should be assumed to be
dependent on the annular ring orientation in the beam cross-section. In the tree
trunk model consisting of concentric annular rings, three anatomic directions are
defined: parallel to the grains L, radial R and transverse 7 (fig. 5a). The mechanical
properties of wood differ in these anatomic directions. At every point of the trunk
model, the L, R, T axes are mutually orthogonal and can be treated as the local set

of principal axes of orthotropy.

a) L b) 1

(@))M))

3

Fig. 5. Anisotropy of wood: a) the trunk model, b) particular cases of beam cross-
-section location in the trunk model

At an arbitrary point in the trunk model, the constitutive relations take the
form:

& =—0, ——=-0p———0y (€))
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v 1 1%
& Z_#O—L+E_O-R_#GT (10)
L R T
VL ViR 1
5r=—E—0L—E—O'R +E—O'T (11)
L R T
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ViR =5 TR (12)
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1
Yir G Trr (13)
LT
1
VRT = TR (14)
Gpr

Examples of material constants for some types of wood determined experi-
mentally are presented in [Keylwerth 1951; Goodman, Bodig 1970; Neuhaus
1994].

If the beam bending plane coincides with the radial direction (cross-section 1
in fig. 5b) then it may be assumed that the beam orthotropy in the bending plane
is defined by the L and R axes. In this case, the material constants in the equations
2)-Q@)arc E_=E, Eky =E, kay =G, Vi = Vi and Viw = Varr If the coefficient
matrix of the set of equations (2) — (3) is not symmetric, then it can be symme-
trised by an approximate assumption thatv, =v, (E,/ E)).

If the beam bending plane coincides with the transverse direction ( cross-
section 2 in fig. 5b), then it may be assumed that the beam orthotropy in the bend-
ing plane is defined by the L and T axes. In this case, the material constants in the
equations (2) - (3) are E, = E,, E,W =E, kay =G,, Vi = Vi and Vi = Vi If the
coefficient matrix of the set of equations (2) — (3) is not symmetric, then it can be
symmetrised by an approximate assumption that Ve = Vi (E,/E)).

If the beam bending plane is not parallel to either of the R or T axes (cross-
section 3 in fig. 5b), then it can be assumed that the wood can be modelled by
a composite with a transverse isotropy. Then the direction L parallel to the grain
is assumed, and the directions in the cross-sections perpendicular to the L axis are
unified. In reality, this is the most frequent case. Transversely isotropic elements
subjected to a plane stress state can be described using the elasticity moduli £,
mean® L0, mean and G,  introduced in Eurocode 5, where E o™ the mean elasticity
modulus along the grain, £, — the mean elasticity modulus across the grain
and G, — the mean shear modulus. It is assumed that £, = E E =E,

k,0, mean® ,90,
and kay =G, e, In the equations (2) — (4).

mean’
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For coniferous wood, v;, =v,, =v, = 0.45, approximately. From the relation

E =E /30 and the symmetry condition (5) Yy = 0.015 can be deter-

k,90, mean k,0, mean

mined (k=1 for adherend 1 and k = 2 for adherend 2).
Taking into account the Cauchy geometric relations:

_O 0, 0w Ou

gh_@x,gkyzay ykxy_ﬁy Ox

b

(15)
the constitutive equations (6) — (8) for adherends 1 and 2 can be given in the form:

Ekx 8uk+ V]ayEkx 6uk

O = 16
- VigVie 06 1=vi v Oy (16)
- VigVige OX  1=vi v Oy

Ou, 0Ov,
o :ka(g+EJ 1o

where: k=1 for adherend 1 and k = 2 for adherend 2.
Constitutive equations for the adhesive

Stresses in the adhesive are due to differences between displacements of adhe-
rends 1 and 2. From the general considerations presented by Rapp [2010a, 2010b],
relations between the stresses in the adhesive and the displacements of the adhe-
rends for a scarf joint can be written in the form:

= EG, (u, —u,)
©HE, +Gtgp)cosp, (15
G
7, :TS(Ul —-0,) (20)
Oy =T,1280, (21

Displacement equations and boundary conditions

A general formulation of the displacement equations and the boundary conditions
for two-dimensional adhesive joints was presented by Rapp [2010a, 2010b]. For
an adhesive scarf joint they take the form:
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82”1 82”1 azUl gl & Ou, 6’)1 &
+ + x4+ =+ —+ -)— = =0
[alx o 6y2 ﬂlxa » ) oy, By, ﬁy 2 =7,y uy) (22)

0% o, Ou, Ov
[ale +a1y &y ﬂly o0 ][2%1 x+g?]+[8_yl+a_x1J§Tl_ylu(Ul_Uz):0 (23)

62u2 62u2 621)2 8 & Ou, v, g,
+ + +2= |- —+ —= | ==+ -u,)=0
[ab axz ayg ﬂZx axay ZZX ot ) a2x ax (ﬂZx ) a 2[ }/214 (ul uZ) (24)

0%v o’v 0’u ou, Ov
(axzuazy St 6x5;](—§72x+%j—[6—;+6—;j3 720(0170)=0 (25)

E E
oy, = Sy = > (26)
Vi B Vi By
ﬂ =1+y—=l+a 1% ,ﬂ =l+————— =1+« Viox 27
“ kay (1 - kayvkyx) b o kay (1 - kayvkyx) b ( )
EsGs Gs
Viu = — Y= (28)

1G (B + G‘Ytgz(px) cos” @, 1 Gy, COS P,

where: k = 1 for adherend 1 and & = 2 for adherend 2.

The equations (22) — (25) represent a set of four elliptic partial differential
equations of the second order, with varying coefficients where the displacement
functions u,, u,, v,,and v, for adherends 1 and 2 are unknown. From condition (5)
and formulae (27) one gets B.= ,Bky

There is a normal loading p, and a shear loading Py, acting on the edge x = /_
of adherend 1, while on the edge x =~ of adherend 2 — a normal loading p, and a
shear loading p, are found (fig. 4). The edges x =1 for adherend 1 and x =/_for
adherend 2 have zero thickness and are called sharp edges (fig. 3). The remaining
edges are non-sharp.

The boundary conditions for non-sharp edges read:
— adherend 1, the edge x =/ :

a S (p T L GO0 P (29)
éy Glxy, ay ax Glxy
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— adherend 1, the edge y == ly:

Ou, ov Ou, Ov
+a =0, —L+—L=

(By =D G+, =0, Ta (30)

— adherend 2, the edge x = — 1 :

ov Py, Ou, Ov )2
+ -1 2 __ P 2 2 __ 2y
ox (P =) oy G,, & Ox G D)

b

2xy

— adherend 2, the edge y ==+ Zy:

ou ov Oou, Ov
-)—2+a,,—2=0, —2+—2=0
(Boy =D G, =0 T T (32)
For the sharp edges, we get:
— adherend 1, the edge x =~/ :
Ou ov
(au S+ (B - 4)5‘7%(”1_“2):0 (33)
ou, Ov
[El"'a_xl]f_;_%u(’)l_uz):o (34)
— adherend 2, the edge x =/ :
ou ov
[azx L4 (B, -1 a_zjsz_hu(ul_”z):O (35)
ou, 0v,|g
(228 v -0 36

In order to ensure the uniqueness of the solution to the boundary value pro-
blem, one should define in the displacement formulation, besides the static condi-
tions, the kinematic boundary conditions to constrain movement of the joint.

The boundary value problem (22) — (25), (29) — (36) is solved using the finite
difference method. The finite difference mesh within the rectangle 2/ x 2/ cove-
ring the projection of the adhesive joint on the plane 0XY is shown in fig. 6.
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Fig. 6. The finite difference mesh on the projection of the adhesive joint

The finite difference mesh has a regular rectangular shape with the side lengths
Ax and Ay. There are m nodes along the X axis (j =1, 2, ..., m), and n nodes along
the Y axis (i=1, 2, ..., n), while n, m > 5. It is assumed that » and m are odd num-
bers. The unknown parameters in the finite difference method are the displace-
ments u,, and v, at the nodes of the mesh.

Havmg determined the displacements u, u,, v ,and v,, one can calculate the
stresses in the adherends using the formulae (6) —(8). The stresses 7, 7_and o, in
the adhesive follow from (19) — (21).

A scarf joint loaded axially

Let us now consider an adhesive scarf joint between the adherends with dimen-
sions / =22.5 cm, ly =10.25cm, g, = g, = g = 4.5 cm made of identical wood with
the following properties:
E =E, =E =1210°N/em* E, =E, =FE =0.8-10° N/cm?
G =G, =G _=0.610°N/cm?*v,_=v, =V, —003,v1 =v, =v =045
Xy y Xy Xy y X VX X
The adhesive has the thickness # = 0.05 cm and the material constants:

E =1215-10° N/em?, G = 0.45-10°N/cm?, v = 0.35

The joint is subjected to the tensile forces N, = — N,= 1 N. Thus, the edges:
x = _for adherend 1 and x = — [ _for adherend 2 are under the action of the uni-
formly distributed stresses: p, = 0.(01084) N/cm? and p, = — 0.(01084) N/cm?,
respectively. The problem is solved using the finite difference method with the
mesh n x m =21 x 45 (Ax =1.02(27) cm, Ay = 1.025 cm). The kinematic bound-
ary conditions introduced for adherend 1 as the constraint of the node (i, j) = (11,
23) in the direction of the X axis and the nodes (i, j) = (11, 13), (11, 33) in the
direction of the Y axis.
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The displacements of the adherends at selected nodes of the finite difference
mesh are given in table 1.

Table 1. The displacements of the adherends in a scarf joint loaded axially [cm]

Displacements of adherend 1 Displacements of adherend 2

iy 1 23 45 1 23 45
u —-2.0325-107 0 2.0325-107 | u, | -2.0444-107 | -1.1910-10”° | 2.0206-10”
o | ! —4.1667-10* | -4.1667-10° | -4.1667-10° | v, | 4.1667-10° | 4.1667-10*° | 4.1667-10"*
u " —2.0325-107 0 2.0325-107 | u, | —2.0444-107 | -1.1910-10 | 2.0206-10”
v, 0 0 0 v, 0 0 0
Lzl -2.0325-107 0 2.0325-107 | u, | -2.0444-107 | -1.1910-10”° | 2.0206-10”
v, 4.1667-10° | 4.1667-10° | 4.1667-10® | v, | 4.1667-10° | 4.1667-10° | 4.1667-10°*

The distributions of displacement functions u , u,and v , v, for the adherends
are given in fig. 7. The displacements for both adherends are depicted in single
drawings, because with the adopted scale, the differences between the appropriate
displacement values are indistinguishable.

Fig. 7. The displacements in the adherends of an axially loaded scarf joint:
a) displacements u , u,, b) displacements v , v,

The remaining results of the calculations are:
— the shear stresses 7_and 7, in the adhesive:

t. = 1.0733-10° N/cm* = const, T, = 0 N/cm?
— the normal stress o, in the adhesive (fig. 10):
o,=1.0733-10* N/cm* = const
— the normal stresses o, , o, and the shear stress T in adherend 1:

o, = 1.0840-102 N/em? = const, o, =0 N/em?, 7, =0 N/em?
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— the normal stresses o, , a,, and the shear stress 7, 1n adherend 2:

o, = 1.0840-107 N/cm® = const, 0, = 0 N/cm STy, = 0 N/cm?

The solution presented to the two-dimensional problem in the theory of elas-
ticity may be verified using a model of a one-dimensional axially loaded rod.
Using the semi-inverse method of the theory of elasticity, one can define the dis-

placements u,, u,, v ,and v, of the adherends with the following formulae:

plx x4+ tg(Es +Gstg (DX)COS ¢x

u (x,y)==* £ I GE p,+A4Ay+B (38)
uz(x,y)=%X+Ay+B (39)

yxplx
U (x,Y)=0,(x,y)=———— z 7 Ax+C (40)

X

where: 4, B and C are arbitrary constants to be derived from kinematic boundary
conditions.

A simple substitution makes it possible to check that the functions (38) — (40)
fulfill the equations (22) — (25) and the boundary conditions (29) — (36) with the
constants £_E G v_,and v, _for both adherends, as well as the equilibrium con-
dition for the loadlng p1 + p2 =0.

Having substituted the relations (38) — (40) to the formulae (16) — (18), the
stresses in the adherends can be found as:

01,(x,y)=0,,(x,y) = p;, = const (41)
Gly(xvy)ZGZy(xay):O (42)
Ty (%, 1) =75, (%, ) =0 (43)

Knowing the displacement functions (38) — (40), one can determine the stress-
es in the adhesive 7, 7 and o, using (19) — (21):

7.(x,y) = p,, sing, cos@, = const (44)

7,(x,y)=0 (45)

oy (x,¥)= p,, sin® @ = const (46)
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The kinematic boundary conditions yield the zero constants 4 and C present
in the equations (38) — (40), while the constant B is given by:

5o 18(E +Gtg’p)cos’ p,
21 G.E,

Pix (47)

The displacement functions for the adherends are given by:

w (x,) = ];—t‘x (48)
Pu . 18(E +Gtg’p)cos’ p,
(X, ) =E—1x— S C B Pis (49)
V xp X
vy (x,3) =0, (x,y) = —yE—l (50)

X

The functions (48) — (50) fulfill the equations (22) — (25), the static boundary
conditions (29) — (36) and the kinematic boundary conditions. The uniqueness
of the solution for the theory of elasticity problem makes it possible to conclude
that the functions (48) — (50) are solutions to the two-dimensional problem of the
scarf joint.

The stress state in the adherends and the adhesive, in the case of a scarf joint
loaded axially with two adherends made of an identical material, does not depend
on the adhesive thickness and its material parameters. Additionally, the stresses
are identical to those in a skew section at the angle 6, in a one-dimensional con-
tinuous element, under a uniaxial stress state.

The adhesive parameters influence only the difference between the displace-
ments of adherends 1 and 2, which is evident in formulae (48) and (49).

The equivalence of the one- and two-dimensional models, and the indepen-
dence of values and distributions of stresses with respect to the adhesive parame-
ters, do not occur in the case of a joint between adherends made from different
materials, for a different loading than a uniform axial one or when g, # g..

For instance, let us look at a scarf joint loaded axially but located between two
adherends made from different materials with the following parameters:

E _=12-10°N/cm?, E = 0.8:10° N/cm?, Glxy =0.6-10° N/cm?
v, =0.03, v, =045

E, =0.9-10° N/cm?, E, = 0.45-10° N/em?, GM =0.5-10° N/cm?
v,,=0.018,v, =0.36
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All the other data remain the same as in the case considered previously.

Two-dimensional stress and displacement states are present in the adhesive
and the adherends. To illustrate the problem, figs. 8—10 present the distributions
of displacements and stresses in the adherends and in the adhesive. Note, that figs.
9 c—fand 10 have a different scale to figs. 9 a, b.

The displacements u,, u, and v, v, in fig. 8 for both adherends are depicted
in single drawings, because with the adopted scale, the differences between the
appropriate displacement values are indistinguishable.
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Fig. 8. The displacements in the adherends of a scarf joint loaded axially in the case
of different materials: a) displacements u,, u,, b) displacements v, v,
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Fig. 10. The stresses in the adhesive of a scarf joint loaded axially in the case of different
materials: a) stress z_(values x 10), b) stress T, (values x 10), c) stress o, (values x 10)

A scarf joint loaded by a bending moment

Let us now consider a scarf joint loaded by the bending moments M, =— M, = M =
= 1 N-cm resulting from the linearly distributed stresses on the edge x =/ of
adherend 1 and on the edge x = —/_of adherend 2 (fig. 11). The dimensions, the
material parameters and the finite difference mesh are assumed identical to the
previously considered case of a scarf joint loaded axially. The kinematic boundary
conditions are imposed on adherend 1 by constraining its node (i, j) = (11, 23) in
the direction of the X axis and the nodes (i, j) = (11, 13), (11, 33) in the direction
of the Y axis.

Now a complete solution to the equations of the theory of elasticity will be
presented. It will contain displacements and stresses in the adherends and in the
adhesive.

M < M
Adherend 2 Adherend 1 |

»

Fig. 11. Loading acting on the adherends of a scarf joint subjected to a bending mo-
ment

In the following, in the captions of the tables and figures presenting the com-
plete solution, the flexibility of the adhesive is emphasized, to differentiate clearly
from the case with an undeformable adhesive.

The distributions of displacement functions u,, u,and v , v, for the adherends
are given in fig. 12. The displacements for both adherends are depicted in single
drawings, because with the adopted scale, the differences between the appropriate
displacement values are indistinguishable.
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Fig. 12. The displacements in adherends of a joint with a flexible adhesive loaded by
the bending moment: a) displacements u_, u,, b) displacements v,, v,

The values of the adherend displacements at selected nodes of the finite diffe-
rence mesh are given in table 2.

The values of stresses at selected points in adherends 1 and 2 of a joint with
a flexible adhesive loaded by the moment are given in tables 3 and 4.

Table 2. The displacements in adherends of a joint with a flexible adhesive loaded by
the bending moment [cm]

Displacements of adherend 1 Displacements in adherend 2

ilj 1 23 45 ilj 1 23 45
u 5.937-10% | -1.646-10"° | -5.970-10" | u, | 5.971-10® | 1.800-10" | -5.935-10*
v, 5.840-10* | —7.379-10° | 5.837-10* | o, 5.840-10® | —7.379-10° | 5.837-10%
M 0 0 0 1 0 0 0
v, 5213-10% | —1.346-10® | 5.209-10* | o, 5.213-10® | —1.346-10® | 5.209-10%
1, -5.937-10% | 1.646-10"° | 5.97-10° | u, )1 —-5.971-10% | -1.800-10"° | 5.935-10%
v, 5.840-10*° | -7.379-10° | 5.837-10* | o, 5.840-10® | —7.379-10° | 5.837-10%

Table 3. The stresses in adherend 1 of a scarf joint with a flexible adhesive loaded by

the bending moment [N/cm?]

Stresses

iy 1 2 23 44 45
o, -3.166-10% | -3.170-10° | -3.175-103 | -3.170-10° | -3.173-10°
g, 1 0 0 0 0 0
Ty 0 0 0 0 0
o, —2.856-10% | —2.856-10° | —2.857-103 | —2.856-10° | —2.855-107
g, 2 3.686-10° | 2.275-10°¢ | —1.722-107 | 2.263-10*¢ 3.709-10¢
Ty —2.436-10° | —2.940-10° | —9.586-107 | 9.203-107 0
9, 0 0 0 0 0
g, 11 0 0 0 0 0
Ty —1.954-10° | —2.032-10° | —1.020-10° | —9.308E-9 0
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Table 3. Continued
ilj 1 2 23 44 45

o, 2.856-107 2.856-107 2.857-103 2.856-10° 2.855-107
g, 20 -3.686-10° | —2.275-10° | 1.722-107 | —2.263-10° | —3.709-10°
7. —2.436-10° | —2.940-10° | —-9.586-107 | 9.203-107 0
o, 3.166-107 3.170-1073 3.175-1073 3.170-1073 3.173-1073
g, 21 0 0 0 0 0
T 0 0 0 0 0

Table 4. The stresses in adherend 2 of a scarf joint with a flexible adhesive loaded by
the bending moment [N/cm?]

Stresses
il 1 2 23 44 45
B -3.173-10% | -3.170-10 | -3.175-10° | -3.170-10° | -3.166-10
g, 1 0 0 0 0 0
Ty 0 0 0 0 0
8 —2.855-10° | —2.856-10 | —2.857-10° | —2.856-10° | —2.856-10°
o, 2 3.709-10°¢ | 2.263-10° | —1.722-107 | 2.275-10° 3.686°10°¢
Ty 0 -9.203-107 | 9.586-107 | 2.940-10°¢ 2.436:10°¢
o, 0 0 0 0 0
o, 11 0 0 0 0 0
7, 0 9.044-10° 1.020-10°¢ | 2.032-10° 1.954-10°¢
o, 2.855-10° | 2.856-10° | 2.857-10° | 2.856-1073 2.856°107
o, 20 -3.709-10° | —2.263-10° | 1.722-107 | -2.275-10° | —-3.686-10°
Ty 0 -9.203-107 | 9.586-107 | 2.940-10° 2.436°10°
9, 3.173-10° | 3.170-10° | 3.175-103 3.170-10° 3.166-103
o, 21 0 0 0 0 0
Ty 0 0 0 0 0

Table 5. The stresses in the flexible adhesive of a joint loaded by the bending moment [N/cm’|

Stresses

ilj 1 23 45
T, -3.132-10* -3.105-10* -3.132-10*
z, 1 —-3.240-107 0 3.240-107
Oy -3.132-10° -3.105-10° -3.132-10°
7 0 0 0
T, 11 -2.031-107 0 2.031-107
Oy 0 0 0
T, 3.132-10* 3.105-10* 3.132-10*
T, 21 -3.240-107 0 3.240-107
Oy 3.132-10°3 3.105-10°% 3.132-10°3
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The stress distributions in adherends 1 and 2 of a joint with a flexible adhesive
are presented in fig. 13.
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Fig. 13. The stresses in the adherends of a joint with a flexible adhesive loaded by
the bending moment: a) stresses o, , g, , b) stresses 0,5 0y, (values x 500), c) stress Ty
(values % 500), d) stress Thy (values x 500)

The values of stresses in the flexible adhesive of a joint loaded by the moment
are given in table 5, and the corresponding distributions — in fig. 14.
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Fig. 14. The stresses in the flexible adhesive of a joint loaded by the bending moment:
a) stress 7, b) stress T, (values x 1500), c) stress o, (values x 10)

In the adherends of the considered scarf joint, the normal stresses o, , o, domi-
nate. They are equal to one another, constant along x and linear along y with an
accuracy of 0.28%. The stress state in the adhesive itself is dominated by the shear
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stresses 7_and o,, which are also approximately constant along x and linear along
v. Due to the adhesive flexibility v, # v,. In this case, there are non-zero normal
o, and shear 7 stresses (fig. 13b—d) in the adherends, and non-zero shear stress
7, in the adhesive (fig. 14b). However, the stresses o, and T in the adherends are
approx. 1000 times smaller than the stress o, and the stress 7 in the adhesive is
approx. 1500 times smaller than the stress 7. Hence, it can be assumed with suf-
ficient accuracy that the stress states in the adherends of a joint with a flexible ad-
hesive loaded by the bending moment M, are identical to the one in a continuous
element subjected to the moment M. For M = 1 N-cm the outermost normal stress
in the cross-section g x 2/ of the continuous beam is g_= £3.173-10° N/cm’.
These values differ by approx. 0.28% from the outermost stresses o, 0, in the
adherends of a joint with a flexible adhesive (tables 3 and 4).

If the adhesive flexibility decreases, then the difference between the adherend
displacements decreases, too. In the limiting case, for the undeformable adhesive,
a physical interpretation ensures the equality of these displacements. This conclu-
sion can be drawn from equations (22) — (25), too. Indeed, when one divides these
equations by G_and lets G, — oo, then the identities #, = u, and v, = v, result. Thus,
it may be assumed, that in the limiting case, the values and the distributions of
stresses in the adherends of a scarf joint are identical, as in the continuous beam
loaded by the bending moment M. If we denote these stresses by 6, 0, 7, , then
we may write down:

__3My
o.(x,y)=- 20’ (51)
o,(x,y)=0 (52)
7y =0 (53)

Thus, the continuous element may serve as an approximate model of a scarf
joint with a flexible adhesive. Indeed, it can be considered as a scarf joint with
an undeformable adhesive. The undeformable adhesive is represented be a skew
section in the continuous element. That skew section is oriented in the continuous
element in the same way as the flexible adhesive in the scarf joint.

The displacements u = u, = u, and v = v, = v, of the continuous element with
an undeformable adhesive fulfill the following set of equations:

X

— 4 - = 3
l-v. v, ox 1-v_v _ 0Oy 2gl;

xy©yx xXy©yx

E ou nyEx ov _ 3My

(54
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Vy,cEy 8_u Ey ov

+ —=0
1- ViV Ox l—vxyvyx oy (53)
8u 80 _0 56
ay o (56)

which results from substitution of the formulae (51) — (53) to the constitutive

equations (16) — (18) in the case of the material properties £_ E Gry Voo Ve

Solving the equations (54) and (56) with respect to u and v, one gets:

3 B _ 3Mxy
u(x,y)=u;(x,y) =ty (x,y) = - 2Eof ~Ay+B (57)
3M(x* + vyxyz)
v(x,¥) =0 (x,y) =0,(x,y) = 3 +Ax+C (58)
4E, gl

where: 4, B, and C are arbitrary constants.

In the case of G = o, the functions u,, u,, v,, v, presented above fulfill the
equations (22) — (25) and the boundary conditions (29) — (36).
The constants A4, B, and C follow from the kinematic boundary conditions,
which can be expressed in co-ordinates as:
— node (i, j) = (11,23), co-ordinates x =0 and y =0 — u(0, 0) =0
— node (i, /) = (11,13), co-ordinates x = —x, and y = 0 — v(-=x, 0) = 0
— node (i, /) = (21,33), co-ordinates x = x,and y = 0 — v(x,, 0) = 0,
where: x, = 10.2(27) cm.

These conditions lead to 4 =0, B =0 and

_ 3Mx;

QTR (59

The displacements in the continuous element loaded by the bending moment,
calculated from (57)—(59) are given in table 6. Comparison of the values presented
in Tables 2 and 6 makes it possible to assess that the maximal displacements u , u,
of the adherends of the joint with the flexible adhesive and the maximal displace-
ment u of the continuous element are equal, with an accuracy of approx. 0.35%.
Similarly, it can be assessed that the maximal displacements v, v, of the adher-
ends of the joint with the flexible adhesive and the maximal displacement v of the
continuous element are equal with an accuracy of approx. 0.85%.
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Table 6. The displacements of the continuous element loaded by the bending moment [cm]

Displacements

ilj 1 23 45
u { 5.949-108 0 —-5.949-10°®
0 5.790-10% ~7.393-10° 5.790-10%
u " 0 0 0
2 5.180-10% -1.349-10°% 5.180-10%
u 21 -5.949-10°® 0 5.949-10%
0 5.790-10% ~7.393-10° 5.790-10%

Normal and shear stresses are present in the continuous element — in the
skew section defined by the adhesive plane. However, in the limiting case
G, = o, the shear stresses in the skew section (undeformable adhesive) cannot
be determined from the formulae (19) — (20) because in the view of u, —u, = 0,
v, — v, = 0 and G, = o, indeterminate symbols of the form o - 0 are found The
shear stresses in the undeformable adhesive can be calculated from the equations
(22) — (25), which do not explicitly include the differences of the displacements
u, —u,, v, —v, and the value G . If we determine u, —u,, v, — v, from the formulae
(19) — (20) and substitute them to (22) — (25), then for the parameters £, Ey, ny,
v, v, the following relations follow:

2 2 2
PTG JUACTY (-S4 N PRGN TS S o7
" Oy oxoy \21. 2 Ox o )2, G, cos Y9,

2 2 2
86021 PRI AT (b SPUE 4 S
X Oy oxoy \ 21, 2 d ox )2 G, cosp,

X

2 2 2
ava u22+6 u22+ﬁxa DB By 5u2+(,b’x—1}au2 by b —=0 (62)
St oy oxoy )\ 2, 2 ax o )2, G, cos g,

2
> ay > _|_ﬂya Uy _ix+§ — 611_24_6& i+f—y:0 (63)
Ox Oy Ox0y 2] 2 d ox )2 G, cosp,

X

xy yx)
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B. =1+ _ Yok 1+ B, =1+ _ by 1+
x T =t avy, Py = =ltay,  (65)
ny (1 _nyvyx) ny (1 _nyvyx)

Substitution of the functions u,, u,, v , and v, given in (57) — (59) to the equa-
tions (60) and (61) or (62) and (63) leads to the relations defining the stresses in
the undeformable adhesive in the continuous element:

7. (x,y)=0,(x,y)sinp, cosp, (66)
7,(x,y)=0 (67)

where: o, (x,y) is given by (51).
The formulae (21) and (66) yield the relation for the normal stress in the un-
deformable adhesive:

O-N (xa J’) = Gx (xa y) Sil’lz(/)x (68)

The formulae (66) — (68) can also be derived in an elementary manner, consi-
dering the equilibrium conditions of the adherend in the vicinity of the adhesive.
The stresses values for the undeformable adhesive in the continuous element fol-
lowing from (66) — (68) are given in table 7.

Table 7. The stresses for the undeformable adhesive in the continuous element loaded
by the bending moment [N/cm?|

Stresses

ilj 1 23 45
T, -3.141-10* -3.141-10* -3.141-10*
T, 1 0 0 0
Oy -3.141-10° -3.141-10° -3.141-10°
% 0 0 0
T, 11 0 0 0
Oy 0 0 0
T 3.141-10* 3.141-10* 3.141-10*
T, 21 0 0 0
Oy 3.141-10° 3.141-10° 3.141-10°

Comparison of the values given in tables 5 and 7 makes it possible to assess
with an accuracy of approx. 0.3% that the maximal stresses in the flexible adhesive
and in the undeformable adhesive in the continuous element are equal.

It can be concluded that the values and distributions of the displacements and
stresses in the considered case of the scarf joint with the flexible adhesive are
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similar to those in the case of the continuous plane stress element (in the scarf
joint with the undeformable adhesive) subjected to the bending moment in the
plane 0XY. The smaller is the adhesive flexibility, the better the approximation.

A scarf'joint loaded by a shear force

The way in which a shear force is transmitted through a scarf joint can be illu-
strated, when the force is constant along the joint. Let us assume that adherend
1 is subjected to the shear force —7 at the edge x =/, and adherend 2 — to the shear
force T at the edge x = — [ . The joint loaded in this way has to be equilibrated, e.g.

by additional bending moments M = T [, according to fig. 15a.

M=Tl,

b)

Adherend 2

Adherend 1

Adherend 2

Adherend 1

- — —

'

M=Ti,

~

Fig. 15. A scarf joint subjected to a shear force and a bending moment

In the following, the load of 7= 1.0 N is assumed in the form of a parabolic
distributed shear stress, and the bending moment M = 71 _in the form of a linearly
distributed normal stress (fig. 15b). All the remaining data are the same as in the
previous case of the joint loaded by the bending moment.

The distributions and values of the displacements u, u,, v , and v, for a scarf
joint with a flexible adhesive are presented in fig. 16 and in table 8.
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Fig. 16. The displacements in adherends of a joint with a flexible adhesive loaded by the
shear force and the bending moment: a) displacements u , u,, b) displacements v , v,
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Table 8. The displacements in adherends of a joint with a flexible adhesive loaded by
the shear force and the bending moment [cm]

Displacements in adherend 1 Displacements in adherend 2

i\ 1 23 45 iy 1 23 45
u, { -2.507-10° | —1.841-10 | —2.514-10° | u, { —2.514-10° | —1.841-10° | -2.507-10°¢
v, —5.666-107 | 2.178-10" | 5.671-107 | v, -5.667-107 | 2.479-10'° | 5.671-107
u, " 0 0 0 u, " 0 0 0
v, —4.081-107 | —6.661-10"" | 4.068-107 | v, —4.063-107 | 1.13-10° | 4.086-107
u, 5 2.507-10° | 1.841-10° | 2.514-10° | u, 5 2.514-10° | 1.841-10° | 2.507-10°
v, —5.666-107 | 2.178-10" | 5.671-107 | v, -5.667-107 | 2.479-10" | 5.671-107

The distributions of stresses in the adherends of a scarf joint with a flexible
adhesive loaded by the shear force and the bending moment are presented in fig.
17. The particular stresses are represented in single figures, because the differen-
ces between their values for both adherends are negligible and indistinguishable
with the adopted scale.
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Fig. 17. The stresses in the adherends of a scarf joint with a flexible adhesive loaded
by the shear force and the bending moment: a) stresses o, , 6, , b) stresses 6, Oy,

(values x 100), c¢) stresses Ty Ty

The values of the stresses in the adherends of a scarf joint with a flexible
adhesive loaded by the shear force and the bending moment are given
in table 9.

Table 9. The stresses in the adherends of a scarf joint with a flexible adhesive loaded
by the shear force and the bending moment [N/cm?)

Adherend 1 Adherend 2
iV 1 23 45 1 23 45
o, 7.034-102 | -2.059-10* | =7.139-102 | 0, | 7.139-102 | 2.060-10* | —7.034-102
o, 1 0 0 0 o, 0 0 0
Ty 0 0 0 Ty 0 0 0
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Table 9. Continued
ilj 1 23 45 1 23 45

o, 6.338-10% | —1.842-10* | —6.425-102 | 0, | 6.425-10 1.843-10* | —6.338-107
o, 2 |-6.312-10* | 6.539-10°¢ 6.329-10* | 0, | =6.329-10* | —6.522-10° | 6.312-10*
Ty -2.810-10% | —=3.090-103 | —3.089-103 | 7, | —3.089-103 | —3.090-10° | —2.810-107
0. 0 0 0 0. 0 0 0
g, |11 0 0 0 g, 0 0 0
Ty -1.623-107% | -1.624-10% | —1.626-102 | 7,, | —1.626-102 | —1.624-10 | —1.623-10~
o, —6.338-102 | 1.842-10* 6.425-10% | 0, | =6.425-102 | —1.843-10* | 6.338-102
0,120 | 6.312-10* | =6.539-10° | —6.329-10* | 0, | 6.329-10* | 6.522-10° | —6.312-10*
Ty —2.810-10% | —=3.090-10° | —3.089-10° | 7, | —3.089-10° | —3.090-10* | —2.810-107
o, —7.034:102 | 2.059-10* 7.139-102 | 0, | —7.139-10 | -2.060-10* | 7.034-107
g, |21 0 0 0 o, 0 0 0
Ty 0 0 0 Ty 0 0 0

The values of the stresses in the flexible adhesive of a scarf joint loaded by the
shear force and the bending moment are presented in table 10, and the correspon-
ding distributions — in fig. 18.

Table 10. The stresses in the flexible adhesive of a scarf joint loaded by the shear force
and the bending moment [N/cm?|

Stresses

ilj 1 23 45
T, 6.917-10° 0 -6.917-10°
T, 1 6.784-10° -2.707-10° 6.784-10°
Oy 6.917-10* 0 -6.917-10*
% 0 0 0
T, 11 -1.614-1073 -1.617-1073 -1.614-1073
o, 0 0 0
T -6.917-10° 0 6.917-10°
T, 21 6.784-10° -2.707-10° 6.784-10°
Oy -6.917-10* 0 6.917-10*
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Fig. 18. The stresses in the flexible adhesive of a scarf joint loaded by the shear force
and the bending moment: a) stress T, b) stress T, ¢) stress o, (values x 10)
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Comparison of figs. 17a, b and figs. 13 a, b leads to the conclusion that the
normal stresses o, and o, shown in figs. 17a and b result from the bending mo-
ment M = Tl , while the shear stresses 7, are due to the action of the shear force
T only. Thus, the action of the shear force can be separated, and in this way, how
the joint transmits the shear force can be assessed.

As in the case of the joint loaded by the bending moment, in the scarf joint
with the flexible adhesive loaded by the shear force and the bending moment, the
distribution of the stresses in the adherends are similar to those in the case of the
continuous plane stress element (in the joint with the undeformable adhesive).
The stresses o, 0, and 7 in the adherends of the joint with the undeformable
adhesive can be given by the following formulae:

_ __3Txy
o,(x,y) =04 (x,y) = 2gl; (69)
o,(x,y)=0,(x,y)=0 (70)

) 3717 - y?)

T, =7,.,(x,y)=——"——

The displacements u = u, = u, and v = v, = v, of the continuous element with
the undeformable adhesive fulfill the set of equations:

E,_ ou, vyE. ov _ 3Ty

X

- 3 (72)
l-v, v, ox l-v v, oy 2gl,
v,.E E
=y 8_u+ y Ov -0 73)
l-v v, ox l-vyv, 8y

ou ov 3T -y

= 74
o ax 4G,gl 79)

which results from substitution of the relations (69) — (71) to the constitutive
equations (16) — (18) for the material parameters £, £ , G Voo Vi . Equations
(72) — (74) can be solved in a similar way to equatlons (54) (56) to get:

3Tx y 3772 Ty3 TVyxy3

4E.gl 4nyg13 4nygl3 4E gl

u(x,y) =u,(x,y) = t,(x,y) = — Ay + B (75)
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2
3Tvyx Xy . x>
4E. gl 4E. gl

U(x,y)zl)l(x,y)zl)z(x,y)z +Ax+c (76)

where: 4, B, C are arbitrary constants.

For the undeformable adhesive (G, = o) and the displacements u , u,, v,, and

v, given by (75) and (76), equations (22) — (25) and the boundary conditions (29)
—(36) are fulfilled as identities.

The kinematic boundary conditions expressed in the co-ordinates take the
same form as in the previous example:

M(Oa O) = O, U(—XO, 0) = 09 U(XO, 0) = 0>
where x; = 10.2(27) cm. They yield B =0, C = 0 and

2
Ix;

" 4E. gl

(77

The displacements of the continuous element loaded by the shear force and
the bending moment resulting from (75) — (77) are given in table 11.

Comparison of the values given in tables 8 and 11 makes it possible to
assess that the maximal displacements u, and u, of the adherends of the joint with
the flexible adhesive and the maximal displacement u of the continuous element
coincide with an accuracy of approx. 0.8%. Similarly, it can be assessed that the
maximal displacements v, v, of the adherends of the joint with the flexible adhe-
sive and the maximal displacement v of the continuous element, coincide with an
accuracy of approx. 7.3%. It should be noted, that the displacements v, v, and v

1> Yoo
are about 5 times smaller than the displacements u , u,, and u.

Table 11. The displacements in the continuous element loaded by the shear force and
the bending moment [cm]

Displacements

il 1 23 45
u . —2.496-10° —-1.877-10° —2.496-10°
v —5.257-107 0 5.257-107
u 0 0 0
) a -3.885-107 0 3.885-107
u )1 2.496-10¢ 1.877-10¢ 2.496-10¢
) -5.257-107 0 5.257-107

Substitution of the functions given by (75) and (76) to the equations (60) and
(61) or (62) and (63) leads the formulae for the shear stresses in the undefor-
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mable adhesive for the continuous element loaded by the shear force and the
moment:

7.(x,y) =0 (x,y)sing, cosp, (78)

7,(x,y)=7,,(x,y)sing, (79)

The relations (21) and (78) lead to the expression for the normal stress in the
undeformable adhesive:

O-N (x’ y) = O-x (X, J’) Sil’lzq)x (80)

The stresses in the undeformable adhesive of the continuous element loaded
by the shear force and the bending moment are presented in table 12.

Comparison of the values in tables 10 and 12 makes it possible to assess that
the maximal stresses in the flexible adhesive of the scarf joint loaded by the shear
force and the bending moment, and the maximal stresses in the undeformable
adhesive in the continuous element loaded likewise, coincide with an accuracy of
approx. 2% in the case of 7 and o, ,and approx. 0.25% in the case of T,

Table 12. The stresses in the undeformable adhesive of the continuous element loaded
by the shear force and the bending moment [N/cm?)

Stresses

iy 1 23 45
T, 7.068-10° 0 —7.068-10°
T, 1 0 0 0
Oy 7.068-10* 0 —7.068-10*
2 0 0 0
T, 11 -1.618-10° -1.618-10° -1.618-10°
Oy 0 0 0
T, —7.068-107 0 7.068-107
T, 21 0 0 0
Oy —7.068-10* 0 7.068-10*

The calculations carried out lead to the conclusion that the considered scarf
joint with the flexible adhesive loaded by the shear force and the bending moment,
features the values of the displacements and the distributions of stresses in the
adhesive and the adherends similar to those in the continuous plane stress element
(in the joint with the undeformable adhesive) loaded likewise. In particular, the di-
stributions of the stresses 7, in the adherends and the stress z_in the adhesive due
to the action of the shear force are parabolic with an accuracy of approx. 0.25%.
The smaller is the adhesive flexibility, the better the approximation.
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Conclusions

In a scarf joint loaded axially, where both adherends are made of the same ma-
terial, the stress states in the adherends and the adhesive do not depend on the
adhesive thickness or its material parameters, and are identical to those in the
continuous element under a uniaxial stress state. The adhesive parameters only
influence the difference between the adherend displacements.

The equivalence of the one-dimensional and two-dimensional models, and the
independence of values and distributions of stresses with respect to the adhesive
parameters, do not exist when: a scarf joint is made of two different materials,
adherends are not loaded uniformly and axially or in the case of adherends with
differing thicknesses.

A general conclusion may be formulated that a scarf joint with an adhesive of
little flexibility between two adherends made of the same material and of the same
thickness, transmits axial forces, bending moments and shear forces in the same
or in a similar way to a continuous element considered as the scarf joint with an
imaginary undeformable adhesive.

In general, the smaller is the adhesive flexibility, the smaller the difference
between the solution to the two-dimensional problem of the scarf joint with the
flexible adhesive and the analytical solution to the joint with the undeformable
adhesive. Thus, an approximate equivalence of displacements and stress states
between an element made of two adherends with a scarf joint and the continuous
element occurs.

This final statement is not obvious, because in a scarf joint loaded in the way
discussed previously, the decreasing adhesive flexibility leads to a change in the
nonlinear displacements and stress distributions in the adhesive to linear ones,
corresponding to the continuous element considered as the scarf joint with an
imaginary undeformable adhesive. On the other hand, in the joint with non-sharp
edges, this behaviour is reversed — due to a decrease in the adhesive flexibility in
the vicinity of the loaded edges, the stress concentrations are more pronounced
and the displacement and stress distributions become increasingly non-linear.
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