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COMPARISON OF DIFFERENT FAILURE 
APPROACHES IN KNOTTY WOOD

This article presents and assesses 64 different ways for predicting the failure onset 
in knotty wooden beams. The aim is to provide engineers and modellers a general 
view of how to evaluate the failure in wooden structural members with knots. 
The studied criteria included both the conventional point-based and average 
stress theories. Special attention was paid to the effect of the elements of the wood 
mesostructure, i.e. knots and fiber deviation, which can generate singular stress 
concentrations as notches or cracks would do in fracture mechanics. The case study 
consisted of predicting the failure onset of bending in structural wooden beams. 
A previously validated finite element model was used in order to compute the hete-
rogeneous stresses. It was found that the knots caused considerable stress singula-
rities so that the size of the average stress theory influenced the failure predictions 
by up to 23%. However, the variations generated by distinct phenomenological 
criteria were in general much smaller. The application of the average stress theory 
in large stress integration volumes is strongly recommended when predicting the 
failure in wood members.

Keywords: Average stress approach, failure prediction, knot, multi-scale model-
ling, phenomenological failure criterion 

Introduction 

Knots are considered defects in wood because they are the most strength-reducing 
components of this material [Phillips et al. 1981]. Indeed accounting for knots 
and fiber orientation in wooden numerical models is common practice. However, 
wood failure prediction is a complex topic due to structural complexity and hete-
rogeneity. In literature, many approaches for timber failure criterion are available 
[Smith et al. 2003; Thelandersson, Larsen 2003; Kasal, Leichti 2005], but there is 
no agreement on which approach offers the best fit and what the main differences 
between each approach are. Usually these criteria are classified by their stochastic 
or deterministic bases, as well as whether or not fracture toughness is considered. 
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The stochastic basis allows for a heterogeneous wood concept, and rupture is 
predicted by assessing the probability of failure in the weakest region. This app- 
roach can be applied in order to not only predict the failure load by itself, but 
also as a complement to other deterministic approaches with [Foschi et al. 1989; 
Gustafsson, Serrano 1999] or without [Clouston et al. 1998] fracture toughness con-
siderations. Yet, statistical premises do not provide physical explanations concerning 
the rupture phenomenon, which is the main objective of numerical models.

Conversely, from the deterministic point of view, failure is predicted from 
the analysis of some physical variables which enables understanding of the rup-
ture process. These variables are normally the stresses, strains, strengths, crack 
lengths, stress intensity factors, and energy release rates. The wood is usually 
modelled as a homogeneous continuum so that the failure load is predicted either 
by performing a conventional strength-based analysis with any of the multiple 
phenomenological failure criteria, if no initial notches or cracks are present, or 
by applying a crack growth criterion under the linear or non-linear fracture me-
chanics theories in the cases of singular stress concentrations. Nevertheless, other 
modelling paradigms [Smith et al. 2003], such as the heterogeneous finite element 
models, morphology-based models and lattice models, have achieved more pre- 
cise emulations of the wood material. All these new paradigms have in common 
is that they account for the timber heterogeneity at various scales. However, 
it was demonstrated [Guindos, Guaita 2013] that conventional failure approaches 
(i.e. point-strength-based criterion and fracture mechanics) may not be appropriate 
for heterogeneous wooden models. This is because on the one hand the hetero-
geneous components of the wood structure (e.g. knots and fiber deviation) are 
capable of generating singular stress concentrations which reduce the accuracy of 
the point-strength-based criteria while on the other hand, the number and location 
of heterogeneities in each specimen seriously hampers the application of fracture 
mechanics approaches.

Nevertheless, the theory of the small finite area [Masuda 1988] or the mean 
stress approach [Landelius 1989; Aicher et al. 2002] may circumvent the afore-
mentioned limitations. These approaches consist of computing the average stresses 
of an area or volume (stress integration region) to further apply a conventio-
nal phenomenological failure criterion. Thus, a priori stress identification is not 
required and may be suitable in the event of stress singularities. This may consi-
derably enhance the usability of current wooden numerical models

Since previous research only emphasized the application of conventional point- 
-strength-based criteria in 2 [Aicher, Klöck 2001; Garab, Szalai 2010] and 3-D 
[Murray 2007] homogeneous models, the objective of this research was to 
assess the applicability of these new approaches and compare them to conventional 
criteria. As a result, a comparison of 64 different ways to predict the failure load 
in wood is presented and analysed.
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Background to phenomenological failure criteria 

This section briefly introduces the phenomenological failure criteria that were 
considered in this research. 

Tsai-Hill Criterion

Tsai [1965] proposed the following equation for composite materials from the 
criterion proposed by Hill [1948]:

(1)

where: σL, sR, sT, τLR, τRT and τTL – the uniaxial and shearing stress components in 
the respective directions and sections,
A, B, C, D, E and F – coefficients dependent upon the uniaxial and shear- 
ing strengths.

This criterion does not account for differences between the tensile and com-
pressive strengths, therefore average strengths must be used instead.

Tsai-Azzi Criterion

Later, Tsai and Azzi [1966] simplified the Tsai-Hill criterion for plane stress con-
ditions, demonstrating its applicability for composites with different strengths in 
tension and compression, by changing the uniaxial strengths according to the sign 
of the stresses:
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where: fL, fR and fLR – the uniaxial and shearing strengths relative to the correspon-
ding wood directions and sections.

As reported by Nahas [1986], Tsai also developed two additional equations for 
the two other mutually orthogonal planes by interchanging the subscripts L-R for 
L-T and R-T in eq.2. 

Norris Criterion

Norris [1962] performed a specific evaluation for wood, developing a criterion 
very similar to Tsai-Azzi except that the interaction terms were not biased towards 
one particular strength:
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Similarly, by interchanging the L-R subscripts and signs, it is possible to 
distinguish among the planes, and tensile and compressive strengths.

Extended Yamada-Sun Criterion 

Yamada and Sun [1978] proposed a plane stress criterion similar to the previous 
two, except that it only calculates the normal and shearing stresses. As reported 
by Murray [2007], this criterion can be extended to three-dimensional models by 
adding the transverse shearing term in each direction:
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hence, according to the above expression, 12 equations have to be derived. 

Hoffman Criterion

Hoffman [1967] proposed 3 linear terms in the Hill criterion so that it is possible 
to distinguish among the tensile-compressive strengths using only one equation:
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where: A,B,…,I – coefficients dependent upon shearing and uniaxial compressive 
and tensile strengths. 

Hashin Criterion

The Hashin [1980] criterion discerns 4 modes of failure, including:

parallel tension:
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and perpendicular compression: 
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where: ft,0, fc,0, ft,90, fc,90, fv,0 and fv,90 are, respectively, the strengths related to longi-
tudinal tension and compression, transverse tension and compression and 
longitudinal and transverse shearing. 

Tsai-Wu Criterion

Tsai and Wu [1971] developed a tensor polynomial strength criterion from Gol-
denblat and Kopnov’s theory. For transversely isotropic models, the Tsai-Wu cri-
terion can be formulated as follows:
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where: F1, F2, F11, F22, F66 and F23 are coefficients obtained from shearing and 
uniaxial strengths. F12 is a coefficient which, on the one hand represents 
the biaxial wooden strength in the longitudinal and transverse directions, 
and on the other, ensures the mathematical consistency of eq. 10 when the 
following condition is satisfied:
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Much controversy involves the determination of F12 in the wood. Originally, 
Tsai and Wu proposed the following equation to compute F12 from 45-degree off-
-axis tensile tests:
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where ft,45 is the 45-degree off-axis tensile strength.

Another method for calculating F12 was proposed by Liu [1984]: 
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Background on the average stress approach 

The average (or mean) stress approach consists of calculating the mean stresses 
of a certain region in a phenomenological failure criterion rather than the singular 
stresses of discrete points. The reason for this is to obtain the advantages of both 
the phenomenological criteria and the fracture mechanics approach within the 
same method. On the one hand, the phenomenological failure criteria are simple 
and can be applied to heterogeneous media because they do not require a priori 
identification of cracks or singularities. On the other hand, the size of the region of 
the average stress approach is chosen from fracture mechanics considerations so 
that, in the case of singular stress concentrations, this approach generates similar 
failure loads to those of the fracture mechanics approaches. 

The key aspects of this average approach are the phenomenological criterion 
and the size of the stress integration region. Two different approaches to this theory 
have been developed to date. Firstly, Masuda [1988] suggested that the integration 
size was related to the size of the wooden fibers. This researcher concluded that 
the proper size was a regular hexahedron of 1 × 0.4 × 0.4 mm to 2 × 0.4 × 0.4 mm, 
corresponding to the L, R and T directions, respectively. This conclusion was ob-
tained after calculating the theoretical stresses of notched beams [Masuda 1986], 
GOST specimens [Masuda 1988] and shear tests [Masuda 1994] in the Norris 
criterion, and comparing experimental with numerical results. Secondly, Lande-
lius [1989] deduced the proper integration size (x0) from a theoretical point of 
view. This was achieved by relating the stress at the front of a sharp crack with 
the transverse tensile strength and the critical strain energy release rate for mode 
I of rupture (GIC):
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where EI is the equivalent orthotropic stiffness for mode I of rupture, which re- 
lates the stress intensity factor with the energy release rate and depends on the 
in-plane elastic parameters [Paris, Sih 1965]. Subsequently, Aicher et al. [2002] 
extended this approach for mixed (mode I and II) failures. This was done by corre-
lating theoretical axial and shearing stresses, the Norris criterion and critical strain 
energy release rates. Thus, the integration size is given by:
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where: Ex, Ey – respectively, the longitudinal and transverse elastic moduli,
GIIC       – the critical energy release rate for mode II of rupture,
k         – the mixed mode ratio or relationship between the average shear 
  and normal stresses (τ/σ).

The application of this equation to heterogeneous timber becomes difficult 
because of the varying mixed mode ratio (k).

Although the same phenomenological failure criterion (Norris) was used in 
both theories, the typical integration sizes given by eq.15 range from 4 to 20 mm 
in softwoods [Thelandersson, Larsen 2003] which are very different from those 
dimensions proposed by Masuda. 

Materials and methods

In order to compare the different failure approaches, a validated numerical model 
was considered [Guindos, Guaita 2013]. This model was constructed with 
ANSYS Multiphysics v11 (ANSYS Inc., Canonsburg, PA, USA), and accounted 
for the heterogeneity (knots and fiber orientations) of 9 P. sylvestris structural 
beams of 3000 × 150 × 50 mm, which were experimentally tested in a standard 
4 point bending test [DIN EN 408: 2010] (fig. 1). The main characteristics of 
this model are described below – however, the reader is referred to Guindos and 
Guaita [2013] for a thorough explanation of the model. 

Fig. 1. 4-point bending test layout

The 3D geometry of the knots was modelled as oblique elliptical cones. Fig. 2 
illustrates this geometry, and presents the necessary measuring parameters.
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Fig. 2. Geometry of the knots in the model, including the measuring parameters: 
position (y), minor (dx) and major (dy) semi-axis, conical angle (ω), and vertical (ay) 
and horizontal (ax) inclinations 

The global fiber orientation was calculated by applying the theory of flow-grain 
analogy [Phillips et al. 1981] in 3D. The flow-grain theory consists of establishing 
equivalence between the streamlines of a laminar flow and the fibre orientation in 
the wood, see fig. 3. This theory presents the advantage that, once the geometry of 
the knots is defined, the fiber orientations are calculated according to the equations 
of fluid dynamics and therefore no experimental measurement is needed. The prac-
tical application of this theory in the present model is summarized in 7 steps: (1) the 
geometry of the beam and knots was defined; (2) a prismatic pipe enveloping the 
beam and knots was created; (3) the bases of this pipe (located close to the ends of 
the beam) were defined as the inlet (small velocity) and outlet (atmospheric pres-
sure) boundary conditions for a laminar flow; (4) the remaining surfaces of the pipe 
and the external surfaces of the knots were defined as non-slip (wall) boundary 
conditions (i.e. zero velocity); (5) the whole domain was meshed and the equations 
of laminar fluid dynamics were solved, providing the streamlines (velocity vectors) 
of the fluid in the whole domain; (6) the elements of the pipe were deleted and only 
the elements of the beam were retained; (7) the elements of the pipe were trans-
formed to solid elements and the material (fiber) orientation was assumed to be 
equal to that of the previously calculated velocity vector – this made it possible to 
consider the fibers’ orientation in the model. A conventional solid analysis was then 
performed, and the stress field was calculated. It is worth mentioning that given 
the complexity of the fiber orientation (fig. 3), the stress field of the case study was 
extremely heterogeneous even under homogeneous loading conditions. Indeed, 
all the stress components were present around the knots [Guindos, Guaita 2014].
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With regard to the solid calculations, the wood was modelled as a trans-
versely isotropic material with anisotropic plasticity. The plastic algorithm con-
sisted of the initial yield surface of Hill [1948], the generalizations of Shih and 
Lee [1978] and the hardening model of Valliappan et al. [1976]. The uniaxial 
and shearing strengths of the species used were taken from literature [Boström 
1992; Argüelles 1994; Thelandersson, Larsen 2003; Grekin 2006] and are shown 
in table 1.

Fig. 3. Fiberorientation according to flow-grain analogy. The figure shows the load 
span (see fig. 1.) of a beam including the knots and the fiber orientation. The fiber 
orientation is accounted for in the model by simulating a laminar flow around the 
knots and reorienting the orthotropic directions

Table 1. Strengths of P. sylvestris used in this study

Strength Value [N/mm2]
Longitudinal tension (ft,0) 89.0

Longitudinal compression (fc,0) 57.0
Transverse tension (ft,90) 4.0

Transverse compression (fc,90) 7.6
Longitudinal shear (fv,0) 9.5
Transverse shear (fv,90) 13.3

45 off-axis tension (ft,45) 4.5

The accuracy of the model was tested against structural bending tests 
[DIN EN 408: 2010]. As verified by a digital image correlation analysis (DIC), all 
the beams failed due to the influence of the knots located at the tensile region of 
the load span. The measuring parameters of the failure knots are presented in table 
2. The validation of the model consisted of comparing 65 FE nodal displacements 
in each member against DIC. The location and load of failure were also compared 
with the numerical predictions, see fig. 4. The photogrammetric technique made 
it possible to consider the influence of the knots in the elastic modulus [Guindos, 
Ortiz 2013]. The failure prediction errors of the model were up to 4%, the failure 
location was predicted with an accuracy of less than 20 mm, and the accuracy of 
the displacement field was 9%.
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Fig. 4. Experimental and numerical validation. (a) Photogrammetric measuring 
points in each beam. (b) Detection of knot, location and load of failure via image 
correlation. (c) Numerical simulation of knot of failure and grain deviation. 
(d) Calculation of failure criteria (Hoffmann criterion shown in the image). 
(e) Comparison of photogrammetric versus numerical displacements 
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Table 2. Characteristics of the failure knots, including the measuring parameters: 
position (y), minor (dx) and major (dy) semi-axis, conical angle (ω), and vertical (ay) 
and horizontal (ax) inclinations.

Beam
Knot size

[mm]
Position

[mm]
Conical angle

[deg]
Inclination

[mm]
dx dy y w ax ay

1 16 18 -21 9 22 -2
2 17 22 -38 3 -49 -16
3 20 24 -24 6 43 5
4 24 30 -13 11 18 7
5 16 17 -43 15 27 16
6 17 25 -28 20 56 29
7 19 30 -38 20 39 25
8 24 35 -11 24 -61 20
9 12 22 -51 7 110 -35

Once the model was validated, the different failure criteria were compared. This 
comparison included all the previous phenomenological failure criteria, i.e. Tsai-Hill, 
Tsai-Azzi, Norris, extended Yamada-Sun, Hoffmann, Hashin and Tsai-Wu. The 
Tsai-Wu criterion was applied twice with distinct interaction coefficients F12. 
The first coefficient was calculated according to eq. 12, and the second accord-
ing to eq. 13, which in this case corresponded, respectively, to the maximum and 
minimum values to ensure the mathematical consistency of the Tsai-Wu criterion 
(eq. 11). This research therefore investigated the extreme values according to the 
Tsai-Wu predictions according to F12. 

Table 3. Size of the stress integration volumes used to proceed with the average 
(mean) stress approach

Length [mm]
L-axis R-axis T-axis

10 10 10
8 8 8
6 6 6
4 4 4
2 2 2
2 0.4 0.4
1 0.4 0.4

0 (Nodal) 0 (Nodal) 0 (Nodal)

In addition, these 8 distinct phenomenological criteria were applied accord-
ing to 8 different approaches. Firstly, the conventional point stress-based criterion 



62 Pablo Guindos

was considered, i.e. the stresses that are calculated in the different criteria cor-
respond to the calculated stresses at the FE integration points (of 2 × 2 × 2 mm 
elements). The 7 remaining approaches consisted of integrating the stresses in 
different hexaedric volumes in order to apply the average (mean) stress approach 
(table 3). 

Results and discussion 

The failure predictions and errors of the different approaches and criteria are 
shown in table 4 for stress integration volumes of 10 × 10 × 10 mm. The average 
errors of all the approaches are shown in fig. 5. In the case study, the best failure 
prediction was provided by the Tsai-Hill criterion when calculated in stress inte-
gration volumes of 8 × 8 × 8 mm in size, with an absolute error of 4.14%.

Table 4. Average errors in failure prediction according to the different (a) phenome-
nological failure criteria and (b) average stress approaches

Beam Failure
Load [kN]

Numerical Error [%]
Tsai-Wu

a Hashin Hoffman Norris Tsai-
Azzi

Tsai-
Hill

Tsai-Wu
b

Yamada-
Sun

1 13.9 -9.3 11.6 7.3 6.7 -0.7 3.3 23.8 5.8
2 11.5 -16.5 0.4 -3.0 -0.4 -7.4 -2.6 12.6 1.30
3 11.4 -10.8 9.0 4.6 6.3 -1.6 3.3 22.1 7.7
4 11.4 -9.7 9.1 6.5 9.1 1.2 6.1 24.0 10.9
5 11.3 -9.8 8.3 7.0 11.4 3.5 6.5 20.7 8.8
6 13.5 -32.4 -18.3 -8.0 0.5 -6.5 -7.2 -5.4 -9.8
7 12.6 -25.3 -12.2 -13.4 -9.4 -15.7 -8.2 0.6 -11.4
8 14.3 -20.7 -5.3 1.1 7.4 3.5 4.9 10.9 -1.8
9 13.0 -30.5 -14.0 -2.8 3.7 3.7 1.4 16.7 1.8

Absolute error [%] 18.3 9.8 6.0 6.1 4.9 4.8 15.2 6.6
Average error [%] -18.3 -1.3 -0.1 4.0 -2.2 0.8 14.0 1.5

Maximum error [%] 32.4 18.3 13.4 11.4 15.8 8.2 24.0 11.4
Standard deviation 

[%] 9.3 11.5 7.3 6.3 6.5 5.7 10.5 7.9

a F12 according to experimental values eq. 12
b F12 according to Liu theory eq. 13
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Fig. 5. Average errors in failure prediction according to the different (a) phenomeno-
logical failure criteria and (b) average stress approaches
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Discussion of the phenomenological failure criteria

As shown in fig. 4. a, all the phenomenological criteria remained quasi parallel 
through the different approaches. The Tsai-Wu criterion, according the 45-degree 
off-axis tensile test, which represented the maximum value of the interaction fac-
tor (F12), provided the most conservative predictions, ranging between –36 and 
–18% of the actual value of the failure load. Thus the size effect of the stress 
integration volume was approximately 18% for this criterion. The most accurate 
stress integration volume was 10 × 10 × 10 mm, which was the largest size, there-
fore the lowest sensitivity to singular stress concentrations was observed. The 
calculation of this criterion was simple because the strength differences in tension 
and compression were taken into account by only one robust equation. It did not 
provide information about the cause of failure, however, and as can be appreciated 
in fig. 4. a, the importance of the interaction factor (F12) was crucial, therefore this 
uncertainty may be a considerable shortcoming. 

The criteria of Hoffman, Hashin and Tsai-Azzi provided similar errors, rang-
ing from –24 to 0%. The size effect was 24%, 6% higher than those the effect 
for the Tsai-Wu criterion. Again, the best integration size was 10 × 10 × 10 mm 
for all of these criteria. The necessary number of equations was 1, 4 and 12, re-
spectively, therefore the computational complexity increased. However, the 
Hoffman criterion did not allow immediate failure identification, while Hashin per-
mitted parallel-perpendicular and tensile-compressive failure identification, and 
Tsai-Azzi provided information on the failure plane.

The extended Yamada-Sun and Norris criteria were almost parallel to the pre-
vious ones and showed a similar size effect, but the failure prediction was slightly 
less conservative, with errors from –21 to 3% and from –19 to +7%, respectively. 
The best integration size was 8 × 8 × 8 mm for the Yamada-Sun extended and 
6 × 6 × 6 mm for the Norris criterion. In a similar way to the Tsai-Azzi theory, 
12 equations were derived in each case, which provided detailed information 
about failure.

The Tsai-Hill criterion, most likely due to the lack of distinction between the 
tensile and compressive strengths, was not in line with the other criteria. When 
the stress integration sizes were larger than 4 × 4 × 4 mm, the predictions were 
very similar to Hoffman, Hashin or Tsai-Azzi. However, for smaller volumes, the 
predictions were akin to Norris or Yamada-Sun extended. The Tsai-Hill criterion 
provided an error between –17 and 5%, which means a size effect of 22%. This 
criterion provided accurate predictions, with only one equation. However, differ-
ences in tension and compression were not taken into account, and no information 
about the cause of failure was provided.

The Tsai-Wu criterion, according to the theory of Liu (minimum value of the 
interaction factor F12), generated the least conservative predictions, providing er-
rors from –12 to 14% (a similar size effect to the previous criteria). The predic-
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tions were far less conservative than those provided by the experimental F12. The 
optimum integration size was 2 × 2 × 2 mm. There was therefore significant influ-
ence of the F12, in that the predictions ranged between 24 and 32% higher than the 
values obtained with the maximum F12. This demonstrated the great variability of 
the Tsai-Wu criterion according to the coefficient F12.

Discussion of stress integration volumes

The results from the different stress integration volumes were parallel to each 
other, see fig. 4. b. As expected, failure prediction increased with stress integra-
tion size. The average prediction of all the phenomenological criteria ranged from 
–22.4 (for the smallest Masuda size 1 × 0.4 × 0.4 mm) to –0.7% (for the 10 mm 
size). Overall, a decrease from 6 to 2% was observed between consecutively-sized 
volumes. The average prediction of the point strength-based criteria was 5.6% 
lower than its corresponding stress integration volume (2 × 2 × 2 mm). However, 
note that this stress integration volume involved a very fine mesh, therefore larger 
differences may be expected for coarser meshes. 

Regarding the phenomenological failure criteria, the best fits were observed 
by: (1) the Tsai-Wu criterion according to the theory of Liu for the point strength- 
-based criterion and Masuda’s sizes with the 2 mm volumes; (2) the Norris criterion 
for 4 mm volumes; (3) the Yamada-Sun criterion for 6 mm volumes; (4) the Tsai-
-Hill criterion for 8 mm volumes; (5) the Tsai-Azzi criterion for 10 mm volumes.

According to these results, the average size effect in all the phenomenologi-
cal failure criteria due to the heterogeneity of the wood was approximately 23%. 
Therefore, the failure prediction can 25% higher if the integration size varies from 
the smallest (1 × 0.4 × 0.4 mm) to the largest (10 × 10 × 10 mm) integration vol-
ume. Conversely, the effect of the different phenomenological criteria, excluding 
the Tsai-Wu criterion, was only approx. 8%. This variation raised to 28% with the 
Tsai-Wu criterion, but it should be considered that the extreme interaction factors 
F12 were accounted for in the case study. 

Conclusion 

Current numerical models of wood material make it possible to account for some 
structural heterogeneity at various scales such as knots or grain deviations. These 
models provide more precise numerical simulations but the application of conven-
tional failure approaches (e.g. point strength criterion and fracture mechanics) 
becomes either less accurate or extremely difficult. However, the average (mean) 
stress approach may overcome such limitations and effectively implement current 
models. In this research, the application of the average stress approach on hetero-
geneous FE models, along with multiple phenomenological failure criteria, was 
presented and assessed. 



66 Pablo Guindos

The average stress theory correctly implemented the model used in the case 
study, which accounted for knots and grain deviation in 3D. Due to singular stress 
concentrations, the application of this theory, rather than the conventional point-
-strength analysis is strongly recommended in heterogeneous models. By apply-
ing this, the numerical predictions were found to be much more robust, especially 
if large volumes were taken into account (e.g. side lengths of 8 or 10 mm).

The size effect of different integration stress volumes was approximately 23% 
for the case study. However, it is suggested that sharper stress concentrations than 
the ones modelled in this research may arise from special types of knots (e.g. 
when several conical knots connect with each other at the edges of a member) 
which may increase the size effect. Therefore, the use of conservative criteria 
in larger volumes is recommended in order to make more robust models. The 
differences between the phenomenological failure criteria were, in general, lo-
wer than the differences among the consecutive volumes (8%). However, notable 
differences were found for the case of the Tsai-Wu failure criterion according to 
distinct interaction factors (F12). In the event that this criterion is applied to wood, 
an exhaustive study of F12 should be performed. In any case, the use of at least 2-3 
different criteria is recommended. The choice should be made according to the 
selected size of the stress integration volumes, and what information is required 
regarding the failure cause. 
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