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THE ROLE OF SHEAR STRESS IN THE BENDING 
STRENGTH TEST OF SHORT AND MEDIUM LENGTH 
SPECIMENS OF CLEAR WOOD

The process of wood bending displays measurable departures from the standard
beam  theory.  The  most  well-known  departures  are  caused  by  shear.  In  the
mathematical part of this work we found and analysed full plane stress of wood
which occur in  III-point  and IV-point loading.  Hill-type strength criteria have
been used. The role of shear is determined by the relation between shear span-
depth ratio and bending-shear strength ratio. Three types of this relation have
been defined, one of which specifies the concept of medium length beam. In the
second part of this work we statistically described bending-shear strength ratio
for European, American and exotic wood species. On this basis, we determined
the shear span-depth ratio of the medium beam. The role of shear stress in the
bending  strength  test  of  medium beam cannot  be  omitted.  The work contains
elements of strength theory from a historical perspective, especially concerning
strength criteria. Given one result of the contact mechanics.

Keywords: bending-shear strength ratio, shear span-depth ratio, bending with
shear,  Zhuravskii  formula,  Hertz  pressure,  Hill  strength criterion,
Norris  criterion,  short-medium-long beam,  length conditions,  log-
-normal distribution

Introduction 

The principles of the beam theory were introduced circa 1750 by two Swiss
scholars, Leonard Euler and Daniel Bernoulli [Timoshenko 1953]. 

Let us consider a straight wooden beam positioned horizontally, along the x-
axis. Let us assume that the load forces of the beam and the reactive forces of the
supports, act vertically, i.e. parallel to the y-axis (fig. 1). 

It is assumed that the normal strains and stresses in the cross-section of the
beam (near top support) are proportional to the distance from the neutral axis
(fig. 2a):
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a)

b)

Fig. 1. Diagram of bending: a) III-point, b) IV-point

σ∣∣( y )=−σm⋅2 y /h , σ m=3 Pc /(bh2
)=R (1a, 1b)

where: σ ∣∣=σ xx –  normal  stress  parallel  to  grain,  y –  coordinate,  σm –
maximum stress (equal R for maximum P), h – beam depth, P – resultant beam
loading (maximum) force, c – distance from the load point to the nearest point of
bottom support (half shear span),  b  – beam width,  R – bending strength.  The
formula  (1b)  appiles  to  both  methods,  the  III-point  and  the  IV-point,  in
accordance with old standards for small samples [BS 373:1957]1 or [PN-68/D-
04103] equivalent to [PC 022-67]. The newer standards for small samples are
used for the III-point method [e. g. ISO 13061] and for structural-size timber IV-
point method [e. g. ISO 8375]. 

The distribution of shear stresses in a beam cross-section can be determined
using Zhuravskii2 formula [Zhuravskii 1856]. For a rectangular beam, it leads to
the following parabolic distribution of shear stress (fig. 2b):

τ ( y )=−τm[1−(2 y /h)
2
] , τm=3 P /( 4 bh)=1.5 τ0 (2a, 2b)

where:  τ  =  σxy – shear stress;  τm, τ0 – maximum and mean absolute values of
shear stress.

According to Hertz theory [Hertz 1881], contact stress (fig. 2c) is equal to:

σ ⊥( x )=−σ c √1−( x /a )
2 , σc=4 P /(π bw )=(4 /π )⋅σ0 (3a, 3b)

where: σ ⊥=σ yy – compression stress perpendicular to grain,  x – coordinate;
σc, σ0 – maximum and mean absolute values of stress, a – half width contact of
support,  w – total width contact of top supports (equal 2a or 4a). The value of

1Where the IV-point method is a more accurate determinetion of MOE.
2D.J. Zhuravskii was a renown Russian engineer.
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a is an experimental variable, but we can try to estimate it. Contact mechanics
handbook [Johnson 1985] gives a for cylinder and sphere press on half-space:

a=√4 Fr /(π bE ⊥ ), a=
3
√3 Fr /(4 E⊥ ) (4a, 4b)

where: F – loading force (equal P or P/2), r – radius of cylindrical or spherical
support, E ⊥ – modulus of elasticity perpendicular to grain.

a) b) c)

  

Fig.  2.  Stress  distributions  in  the  bending  beam  of  homogeneous  material:
a) normal parallel to grain, b) shear, c) compression of the support

Full  plane  stress  should  satisfy  the  differential  equations  [e.g.  Johnson
1985]:

(σ∣∣)x
'
=−τ y

' , (σ ⊥ )y
'
=−τ x

' (5a, 5b)

Complex distribution of plane stress requires application of proper strength
criteria.  There are numerous criteria referring to the strength of a material, two
of which refer directly to shear. It turns out that shear stresses occur in a material
even during pure tension or pure compression3. The measure of material effort in
the Coulomb-Tresca criterion is double the maximum value of the shear stress
[Tresca  1864].  Huber  criterion  [Huber  1904]  stipulates  that  the  measure  of
material’s effort in a complex state is such a value of normal stress which gives
the same distortion strain energy as the stress state. Therefore:

σ red=√σ∣∣
2
−n σ∣∣σ ⊥+σ ⊥

2
+m τ 2

≤Rred (6a/b)

where: σred – reduced stress; n = 2, m = 4 in the Coulomb-Tresca criterion (6a);
n = 1, m = 3 in the Huber criterion (6b); Rred – effective strength. 

The first to identify the distortion strain (shear) energy and to publish the
criterion in form (6b) was a renowned Polish engineer Maximilian Huber4.

The  character  of  both  criteria  makes  them  applicable  to  elastic-plastic
isotropic materials, but wood is anisotropic. For example, formula (6) implies
that  shear  strength  is  only  √m  (2  or  1.7)  times  smaller  than  the  effective

3This fact could be described by the Morh’s circle.  However, in experimental tension tests for
metals, there occur diagonal 45° fractures, called Chernov-Lüders lines.
4It  was formed independently by von Mises in 1913 and Hencky in 1924. The same idea was
proposed by Maxwell in 1856, published in 1936 [e.g. Kordzikowski 2012].
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strength (bending); however, for wood is it about 10 times smaller [Kollmann
and Côté 1984]. Therefore, a simple inequality, called maximum stress criterion5

[e.g. Camanho 2002], is often used in wood technology and composite materials:

∣σ∣∣∣≤ R∣∣, ∣σ ⊥∣≤ R⊥ , ∣τ∣≤ S (7)

where: R∣∣ , R⊥ –  strength  along  and  across  the  fibres,  S –  shear  strength
(along the fibres). However, more complicated criteria for anisotropic materials
should be applied in a complex stress. The first such criterion was introduced by
von Mises [von Mises 1928]. His criterion is discussed in the presentation [Zahr
Vinuela and Perez Castellanos 2015].  The  Mises criterion was simplifield by
Hill [Hill 1948] in such a way that it would be reduced to Huber criterion in case
of an isotropic material6. For monotropic materials7 in plane stress parallel to the
monotropic axis, this criterion has the following form:

H=σ∣∣
2
/R∣∣

2
−σ∣∣σ ⊥ /( R∣∣R∗)+σ ⊥

2
/R⊥

2
+τ 2

/S 2
≤ 1 (8a/b)

where:  H –  measure  of  material  effort, R∗=R∣∣ in  Hill  criterion  (8a),
R∗=R⊥ in Norris criterion (8b). 

Hill described the case of rotational symmetry of anisotropy and plane stress
perpendicular to the axis of symmetry. The case of parallel plane was described
18 years later [Azzi and Tsai 1965]. Therefore, formula (8a) is sometimes called
Azzi-Tsai criterion [e.g. Guindos 2014] (or Tsai-Hill criterion [e.g. Kolios and
Proia 2012]), and its general form is the Tsai-Hill criterion [e.g. Camanho 2002].
Three years earlier, a similar criterion (8b) had been proposed by Norris [Norris
1962].

None of these criteria takes into consideration differences in compresion and
tension strength8. The problem was solved by Hoffman [Hoffman 1967] or Tsai
and Wu [Tsai  and Wu 1971].  A more complicated solution had already been
presented in 1966 [Goľdenblat and Kopnov 1966]9.

Methods and data sources
 
The first theoretic objective of this work is a mathematical analysis of the effect
of shear on the bending strength of wood. At the start we need to find full plane
stress satisfying (5). The purpose was to obtain the function of wood effort in
a cross-section which would take shear into account. This function was tested for
cases of different quality. Single-parameter strength criteria (6) do not offer the
correct ratio R/S of bending and shear strength for wood (see this ratio definition

5Not to be confused with Rankine-Clebsch criterion of maximal normal stress.
6Hill’s criterion contains 6 parameters, and Mises as many as 9.
7Wood is approximately transversely isotropic (monotropic).
8In a nonanalytical approach, separated signs R║

±
 , R

± [e.g. Garab and Szalai 2010].
9According to Kyzioł [2009], it is practically equivalent to Tsai-Wu’s criterion.
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(20)  in  the  next  section).  Research  tools  in  this  work  are  Hill10 and  Norris
strength  criteria  in  the  form of  (8)  for  monotropic  materials  such  as  wood.
Because of the moving of the neutral axis during wood bending, it is pointless to
apply more complicated criteria such as Hoffman criterion or Tsai-Wu criterion.
The specific theoretical purpose of this work is to form general conditions for
a beam under bending where the effect of shear on strength can be ignored.

The second, practical part of the work, presents a study of the relation of
bending (III-point method) and shear strengths based on three comprehensive
data sources for domestic [Krzysik 1978],  American [Green et  al.  1999] and
exotic wood species [Jankowska et al. 2012]. The last source contains results of
a study carried out by one of the co-authors of this work. All three data sources
include the results of tests of small clear wood specimens related to moisture
content of 12% or Krzysik cases to 15%11. American data sources are consistent
with  [ASTM  Standard  D  143-94].  Shear  was  measured  by  compression
L-shaped specimens to failure on 2 × 2 inches tangential (or radial) surface. In
(tangential) bending tests, 2 × 2 ×30 (or 1 × 1 × 16) inch specimens were used,
with a span length of 28 (or 14)  inches and a  radius of centre  support  of  3
(or 1.5) inches. The (tangential) bending strength of Polish and exotic species
was determined by standard [PN-77/D-04103], which complies with [ISO 3133],
but is not equivalent to it. The specimens had a size of 20 × 20 × 300 mm with
a span  length  of  240 mm and  radius  of  the  supports  of  15 mm.  The  shear
strength  in  Krzysik  data  sources  was  measured  in  accordance  with  the  old
standard [PN-59/D-04105], but for exotic species a newer standard [PN-79/D-
-04105] complies with [ISO 3347]12. In the old standard, compression L-shaped
specimens were sheared on a 20 × 20 mm radial surface. In the second standard,
T-shaped specimens with radial or tangential shear surface size of 20 × 30 mm
were  used. The  source  data  were  statistically  analysed. For  log-normal
distribution [Gaddum 1945] the following designations were used:

X =M −δ
+ Δ

=e μ±σ , X m=e μ+3σ (9a, 9b)

where:  X –  log-normal  variable,  M –  median  value;  Δ,  δ –  right  and  left
deviation,  μ – mean value of lnX;  σ – standard deviation of lnX;  Xm -  statistic
extreme  of  X (alpha  level  0.001). Pearson  correlation  coefficients  ρi were

calculated for each source between bending strength and shear strength or ρ i
'

between their  logarithms.  We compared  them on alpha  level  0.001 with  the
critical values ρi

crit(ni) for the viariables uncorrelated with ni data points13:

ρ1
crit

(29 )=0.58 , ρ2
crit

(206 )=0.23 , ρ3
crit

(40 )=0.50 (10)

10R. Hill was an English applied mathematician. He passed away in 2011.
11For ratio parameter it is practically irrelevant.
12About Polish standard of shear strength: Kozakiewicz [2000].
13Alpha value 0.001 is much more restrictive here than 0.05.
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Computed  measure  compliance  λi of  ratio distributions  with  normal

distribution and λ i
' with log-normal distribution.  The  λ-Kolmogorov test was

used with the Lilliefors corrections [Lilliefors 1967] and its newer tables [Molin
and Abdi 1998]. Cross compliance of ratio distributions tested by measure λi-j of
Kolmogorov-Smirnov. The tests were performed on alpha level 0.05 (or 0.01),
which implies the critical values of λ statistic:

λi
crit

=0.88 , λi− j
crit

=1.36 , ( λi− j
crit

=1.63 for α=0.01 ) (11)

The average ratio was determined and extreme cases were analysed. On the
basis of these values was derived numeral length conditions for beam, which the
role of shear stress in the bending strength test should not be omitted. These
conditions are expressed by the key shear span-depth ratio 2c/h.
 
Mathematical research

Consider the plane stress during the bending test (fig. 1 and 2).  The greatest
stresses occur in the area under the top support |x|  a, |y | h/2. Full plane stress
(fig. 3) is found by solving the equations (5) in compliance with (3), (2), (1)14:

σ∣∣( x , y )=−σm

2 y
h {1−

4 a
πl [ x

a
arcsin( x /a )+√1−( x /a )2−

1
3
√1−( x /a )23]} (12)

τ ( x , y )=τm [1−(2 y /h)
2 ]⋅2

π
⋅[arcsin ( x /a )+

x
a
√1−( x /a )

2] (13)

σ ⊥( x , y )=−σ c√1−( x /a )
2
⋅(1/4)⋅[2+3 (2 y /h)−(2 y /h )

3 ] (14)

Equations (12),  (13) apply to III-point  method,  but  figure 3 shows graphs of
stresses for both III-point and IV-point methods.

a) b) c)

  
Fig. 3. Stress distributions under the loading support: a) normal parallel to grain,
b) shear, c) compression of the support

Figure 3 shows the dependence of one variable, and the other is the same as in
figure 2. According to criteria (8a/b), stress σ doesn’t affect the strength if:

14These are the boundary conditions if we take into account arm’s factor (c-a)/c.
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The  inequality  (16a/b)  was  derived  from  (12),  (1b),  (14),  (3b)  and
generalization of (12) to  IV-point  method. Let  h/w = 1 ([DIN 52186] or [EN
408])15 and  R║/R ≈ 5.2 for  compression  (acc.  [Krzysik  1978]).  Then we get

2c/h > 23.0 from (16a) (R* = R║) and 2c/h > 4.4 from (16b) (R* = R). Here the
Hill criterion is too strong and isn’t compatible with the experiment, but we have
a weaker condition (16b) resulting from Norris criterion16.

Assuming  (16b) and (14) in the analysis of the role of shear, we can put
σ = 0 for |x| = a. Now, Hill and Norris criteria (8a/b) take the following form:

H ( y )=(σm (x )/R )
2
⋅(2 y /h)

2
+( τm/S )

2
⋅[1−(2 y /h)

2]
2

≤ 1 (17)

where:  σm(x) – maximum value of  σ|| for a fixed x;  R = R║ – bending strength,
h/2 ≤ y ≤ h/2. If  we derive  the  ancillary variable  t = 1 - (2y/h)2,  the  condition
(17) will be reduced to a quadratic inequality:

H ( t )=(σ m(x )/ R)
2
−(σ m( x )/ R )

2
⋅t+(τm /S )

2
⋅ t2

≤ 1 , 0 ≤ t ≤ 1 (18)

The variable t for the middle layer of the beam has the value of 1, and 0 for
the outer layers. The argument of vertex (minimum) of this square function is:

tm=(S / R)
2
⋅σ m( x )

2
/(2 τm

2
) (19)

The formula contains the key ratio of bending and shear strengths:

ratio=R/S (20)

If tm ≥ 1, then effort H has the lowest value in the middle layer of the beam
(t = 1)  and  increases  monotonically  towards  the  outer  layers  (t = 0).  The
maximum normal  stress  is  significantly greater  than the greatest  shear  stress
(at least 1.41 ratio times):

σ m( x )/ R ≥ √2⋅τm/S  – normal bending (21a)

If 0.5 < tm < 1, then local maximum in the middle layer of the beam (t = 1) is
not the global (fig. 4b). The shear stresses are not dominating, but should not be
overlooked:

τm/S <σ m( x )/ R<√2⋅τm/S  – bending with shear (21b) 

Local  maximum in the middle layer of the beam (t=1) is also the global
maximum tm≤0.5. It is a situation of domination of the shear stresses:

 σ m(x )/ R ≤ τm/S  – shear bending (21c)

15 These standards recommend the use steel plates under supports.
16 The easiest derivation of this condition is from criterion (7).
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Results of mathematical research and discussion

Inequalities (21) lead to the following shear span length conditions of a beam17:

– long beam                                                          2c /h ≥ ratio /√2+2a /h (22a)

– medium beam  ratio /2+(16 a−4w )/(3 π h ) < 2c /h < ratio /√2+2a /h (22b)

– short beam      ratio /2+(16 a−4w )/(3π h ) ≥ 2 c /h (22c)

Fig.  4.  Graphs  of  wood  effort  H(y)  in  cross-section  (ratio=10):  a)  long  beam,
b) medium beam, c) short beam

Conditions  (22a)  or  (22b)  and (16b)  should  be  met  if  we  intend to  test
bending, not shear, in the bending test. For example, in the conference materials
[Sorn et al. 2011], bending strength of spruce is 95% for 2c/h ≈ 12. From (22a)
we conclude that here maximal ratio ≈ 17.

Conditions (22c) and (16b) should be met if we wish to measure the shear
strength using the short-beam test [BS EN ISO 14130]. This method can also be
used to try for wood [Yoshihara and Furushima 2003]. Standard [ASTM D 198-
02] recommends here 2c/h < 10 for IV-point bending method. Flexural fracture
curves  described in  [Schneeweiß  and  Felber  2013]  have  shear  fracture  for
2c/h ≤ 8.  This  suggests,  under  (22c),  that  the  maximal  value  of  ratio is
approximately 16. 

On the basis of (14), we calculated half width of support-beam contact: 

a=
3
√2 F r h/(π b E⊥ ) (23)

whose  values  are  approximately  150%,  95%  of  the  (4a),  (4b)  respectively.
Formula (23) shows that the radius of top supports in IV-point method would be
four times smaller than in III-point method. 

Data sources research

Dimensionless  ratio parameter  expressed  with  formula  (20)  determines  the
susceptibility of wood to shear during bending. Tables 1, 2 and 3 present the
extreme values of this parameter for various wood species from three different
sources. 

17 For both III-point and IV-point methods, like (16).
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Table 1 presents selected data from the most recognised Polish sources. The
correlation coefficient for all these 29 species is equal to  ρ1 = 0.612 > 0.58 or
ρ1’ = 0.77 > 0.58. In figure 5.1 we see a histogram of these ratio values.

Table 1. Bending and shear strength of Polish market wood [Krzysik 1978]

The trade and Latin name of wood

according to [EN 13556:2003]

Bending
strength

R [MPa]18

Shear
strength

S [MPa]18

Ratio

(ratio)

R/S

European lime (Tilia cordata Mill.)   90   4.5 20.0
Common alder (Alnus glutinosa (L.) Gaerthn.)   85   4.5 18.9

European walut (Juglans regia L.) 119   7.0 17.0

European beech (Fagus sylvatica L.) 105   8.0 13.1

European ash (Fraxinus excelsior L.) 102 12.8   8.0

Robinia (Robinia pseudoacacia L.) 120 16.0   7.5

European aspen (Populus tremula L.)   52   7.0   7.4

Yew (Taxus baccata L.)   88 14.0   6.3

Mulberry* (Morus alba L.)   73 12.5   5.8

*The wood database http://www.wood-database.com.

The  Kolmogorov  statistic  gives  parameter  λ1 = 0.87≈0.88  or  λ1’ = 0.54
< 0.88, which means log-normal distribution (and even normal) on alpha level
0.05. Let us take a look at species less susceptible to shear during bending. Here
are the most ring-porous species: mulberry with minimal ratio 5.8, robinia – 7.5
and ash – 8.0. Also, softwood yew has a very low value – 6.3. 

Bending  strength  tests  should  be  performed  for  the  tree  species  most
susceptible to shear. Of the species indigenous to Poland, there are three which
stand out: European lime – 20.0, black alder – 18.9 and European walnut – 17.0.
These are diffuse-porous or semi-ring-porous species. Quite a high  ratio value
shown  by  European  lime  can  be  explained  by  its  relatively  high  bending
strength, for such light wood, and by its large medullary rays, which lower the
shear strength. European lime is a perfect material for sculpting, not only thanks
to its softness but also thanks to its low shear strength. 

Examples of species from the USA market with extreme disproportion are
presented  in  table  2  below. The  correlation  coefficient  for  206  species  is
ρ2 =0.813 > 0.23  or  ρ2’ = 0.86 > 0.23,  which  is  a  strong  correlation.  The
histogram in  fig.  5.2)  presented  the  ratio of  all  the  species  for  this  source.
Kolmogorov statistic19 gives values λ2 = 0.94 > 0.88 and λ2’ = 0.46 < 0.88, which
mean log-normal  distribution,  but  not  normal.  It  is  caused  by three  species:
marishballi,  mersawa, kaneelhart, whose  ratio is higher than a triple standard
deviation.
18 Orginal unit is 0.1 kG/cm2 = 0.981 MPa, but for 15% moisture content (not 12%).
19 For full experimental distribution function.
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Table 2. Bending and shear strength of USA market wood [Green et al. 1999] 

The trade and Latin name of wood

according to [EN 13556:2003]

Bending
strength

R [MPa]

Shear
strength

S [MPa]

Ratio

(ratio)

R/S

Marishballi* (Licania sparsipilis S. F. Blake) 191 12.1 15.8
Mersawa (Anisoptera spp.)   95   6.1 15.6

Kaneelhart* (Cinnamonum camphora Ness & Eberm) 206 13.6 15.2

Manbarklak* (Eschweilera longipes Miers.) 183 14.3 12.8

Western hemlock (Tsuga heterophylla (Raf.) Sarg.)   81 6.5 12.5

Ipé (Tabebuia spp.) 175 14.2 12.3

‘White cedar’ (Thuja occidentalis L.)   42   6.9   6.1

Silver maple** (Acer saccharinum L.)   61 10.2   6.0

American white oak (Quercus alba L.)   71 12.5   5.7

Peroba rosa (Aspidosperma peroba Fr. Allem.)   83 17.2   4.8

*[Green et al. 1999].
**The wood database (http://www.wood-database.com).

Other species most susceptible to shear during bending are manbarklak –
12.8 and western hemlock – 12.5. The less susceptible to shear during bending
are white oak – 5.7 and silver maple – 6.0.

The ratio parameter values for exotic species is presented in last table 3.

Table 3. Bending and shear strength for exotic wood [Jankowska et al. 2012]

The trade and Latin name of wood 

according to EN 13556:2003
Bending
strength

R [MPa]

Shear
strength

S [MPa]

Ratio

(ratio)

R/S

Obeche (Triplochiton scleroxylon K.Schum.)   73   4.0 18.2

Azobe (Lophira alata Benks. ex Gaertn.f.) 246 15.0 16.4

African padouk (Pterocarpus soyauxii Toub.) 134   8.5 15.8

Tatajuba (Bagassa guianensis Aubl.) 109   7.0 15.6

Pterygota (Pterygota macrocarpa K.Schum.)   86   7.0 12.3

Gombeira (Melanoxylon brauna Schott.) 182 23.9   7.6

Pau amarelo (Euxylophora paraensis Huber.) 125 16.6   7.5

Bintangor (Calophyllum spp., e.g. C. inophyllum L.)   80 11.5   7.0

Kempas (Koompasia malaccensis Maing.ex Benth.) 110 16.0   6.9

Avodire (Turraenthus africanus (Welw.ex C.DC.)
Pellegr.) 

  86 12.5   6.9

For all 40 species ρ3 = 0.728 > 0.50 or ρ3’ = 0.76 > 0.50 and λ3 = 1.12 > 0.88
or λ3’ = 0.73 < 0.88, which means good correlation and log-normal distribution.
On the histogram in figure 5.3, we see that four species stand out from the rest.
These are obeche, azobe, tatajuba and African padouk. 
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The lowest susceptibility to shear is shown by avodire wood, with ratio 6.9,
consistent with the American source where ratio is 6.3. For kempas wood, we do
not see this compatibility.  An exotic species more susceptible to shear during
bending is, for instance, pterygota – 12.3. 

Let us now use the Kolmogorov-Smirnov test to study the compliance of the
ratio distributions with the three sources. Such compliance of the data occurs
only for the exotic and Polish wood species λ1-3 = 0.58 < 1.36. However, Polish
and American sources show a discrepancy λ1-2 = 1.80 > 1.36, similar to the data
for exotic and American species λ2-3 = 1.61 > 1.36. But the last two distributions
show compliance on alpha level 0.01 (λ2-3 = 1.61 < 1.63). 

Results of data research

The  ratio showed log-normal  distribution  at  a  significance  level  of  0.05  (or
more) in all three sources (fig. 5). These distributions show mutual conformity at
a  significance  level  of  0.01,  except  for  the  American  and  the  older  Polish
sources. 
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Fig. 5. Histograms (1-3) of the  bending and shear strength  ratio acc. : 1) Krzysik
[1978], 2) Green et al. [1999], 3) Jankowska et al. [2012], 4) all sources – correlation
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All histrograms have the same dominant value of 9. The medians of  ratio
values, together with the right and left deviations, for all sources are: 

ratio1=10.3−2.7
+3.6 , ratio2=8.6−1.4

+1.7 , ratio3=9.9−2.2
+2.8 (24)

where the aritmetic mean is 9.6. Statistic extremes of  ratio are 25.4, 14.9 and
20.9 respectively (the aritmetic mean is 20.4). American data 2) have the best
correlation  and  the  smallest  deviations.  Exotic  species  3)  ratio distribution
parameters  have  intermediate  values.  On the  basis  of  the  conformity of  this
source with sources 1) and 2), it can be assumed that the ratio=9.9−2.2

+2.8 is the
value for wood species from all over the world. For comparison, other authors
assume that the “lower limit” of ratio is 10 [Soltis and Rammer 1997]20.

Conclusions

The analysis of the  bending strength test of a beam that was not enough long
showed that the role of shear may be higher than the role of the bending moment
and support crushing. For crushing stresses, Norris criterion was better than Hill
criterion (according to  Rowlands et al. [1985]). Three types of bendings were
described  as:  normal  bending  (for  a  long  beam),  bending  with  shear  (for
a medium beam) and shear bending (for a short beam). The introduction of an
intermediate state for a medium beam is a novelty. In this state of bending, shear
stresses dominate locally, but not globally. In other words, the wood effort of the
global minimum changes to the local maximum.

During  the  bending  strength  test,  the  shear  span-depth  ratio  2c/h for
a medium beam should be  greater  than  half  of  the  bending-shearratio R/S –
(22b). For a long beam, shear span-depth ratio should be greater than bending-
-shear ratio divided by root of two – (22a).

On the  basis  of  (22b),  (24)  the  shear  span  of  the  medium beam can be
determined for21: 

– Polish source:           5.1−1.3
+1.8

< 2c /h < 7.3−1.9
+2.6 (25.1)

– American source:  4.28−0.72
+0.86

< 2c /h < 6.1−1.0
+1.2 (25.2)

– exotic wood:            5.0−1.1
+1.4

< 2c/h < 7.0−1.5
+2.0 (25.3)

Statistic extremes of medium beam shear span depth ratio are 18.0, 10.5 and
14.7 respectively (the aritmetic mean is 14.4). By analogy, the maximal shear
span depth ratio for a short beam is 12.7, 7.4, 10.4 respectively (mean 10.2). For
comparison,  the  standards  [BS  373:1957,  PN-68/D-04103,  ISO  3133,  DIN
52186, ASTM D 198-02, EN 408] give the shear span depth ratio 2c/h equal: 14
(or 6iv), 12 or 8iv, 14 ±2, 15, 10iv-24iv, 12iv ±2, respectively22. It determines the

20 However, their diagrams in figures 2, 3, 4, 5 suggest an upper limit.
21 We disregard here the witdth contact (w and a).
22 Superscript iv refers to the IV-point bending method.
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correct  shear span length of long beams but doesn’t  exclude the extremes of
medium beams.  The exception is  the  old standard [PN-68/D-04103]  (or  [BS
373:1957]), which suggests too short beam in the IV-point bending method.

One  should  be  careful  with  the  species  more  susceptible  to  shear,  i.e.
Europan lime, common alder, European walnut or western hemlock. Thanks to
tables like 1-3, we can match the span to a given wood species. For the species
that are less susceptible to shear during bending, such as mulberry, yew, robinia
or American white oak, silver maple and avodire, even 30% shorter beams could
be used.  Here,  caution should be exercised that  the specimen is  not  crushed
(condition (16b)).

In the case of IV-point bending, the values of shear span should practically
equal that of III-point bending.  However, the IV-point method is less prone to
wood crushing by loading support. Moreover, only this method has exact stress
σm given by (1b), without other stress. Interestingly, this fact doesn’t depend on
the size of the supports.
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