

# Drewno. Prace naukowe. Doniesienia. Komunikaty Wood. Research papers. Reports. Announcements

Journal website: https://drewno-wood.pl



# Global Research Trends in Wood Pellets, a Renewable Energy Source: A Bibliometric Analysis

İlker Akyüz<sup>a</sup> (10)
Nadir Ersen<sup>b\*</sup> (10)
Selahattin Bardak<sup>c</sup> (10)
Kinyas Polat<sup>c</sup> (10)
Mustafa Acar<sup>b</sup> (10)

- <sup>a</sup> Karadeniz Technical University, Trabzon, Turkey
- <sup>b</sup> Artvin Çoruh University, Artvin, Turkey
- <sup>c</sup> Sinop University, Sinop, Turkey

#### Article info

Received: 28 January 2025 Accepted: 10 June 2025 Published: 12 November 2025

# Keywords

wood pellet energy bibliometric VOSviewer Due to global warming and climate change, more importance has started to be attached to renewable energy sources as alternatives to fossil fuels. Wood pellets are among the renewable energy sources, and have been the subject of a growing number of studies. Therefore, developments and trends in research on wood pellets can be determined through bibliometric analysis of publications. This study explores the current status and "hot topics" of research on wood pellets using performance analysis and scientific mapping based on publications from 1980–2023. For this purpose, we carried out a bibliometric analysis of 758 publications in the Web of Science database scanned with the keywords "wood" and "pellets". The numbers of publications and citations on wood pellets have grown steadily over the years, with 67% of publications and 89% of citations coming in the last decade. A total of 2,294 authors from 884 organizations and six continents have contributed publications in the field of wood pellets. The University of British Columbia (Canada) and the United States Department of Energy (USA) were the institutions with the most numerous and the most cited publications. Sokhansanj Shahab from the University of British Columbia was the most active and most cited author. The published literature has focused on three topics: biomass, bioenergy, and combustion. As a result, this study will provide a general perspective for future research relating to wood pellets.

DOI: 10.53502/wood-206928

This is an open access article under the CC BY 4.0 license: https://creativecommons.org/licenses/by/4.0/deed.en.

# Introduction

Studies on biomass, one of the renewable energy sources, have accelerated in recent years. Considering its great potential and its economically and environmentally advantageous properties, interest in biomass is increasing. Biomass is an important energy source, and is currently the fourth largest energy source globally.

Many developed countries see bioenergy as the main energy source of the future (Sungur et al., 2018).

Wood pellets are among the biomass fuels classified as renewable energy sources, and are obtained as a result of drying, grinding, pressing and cooling of wood waste (Zengin et al., 2020). Wood pellets have several advantages over fossil fuels (Saraçoğlu, 2010; Oral, 2022; Saletnik et al., 2022): (1) they are an environmentally

<sup>\*</sup> Corresponding author: nadirersen20@artvin.edu.tr

friendly, economical and high value-added energy source; (2) they produce less carbon emissions than fossil fuels; (3) they offer relatively high energy density and ease of use; (4) they are more favorable in terms of storage and transport, and are more homogeneous in terms of physical and chemical properties; (5) the ash rate of pellets is approximately 10 times lower than that of coal; and (6) they are produced under high pressure without the addition of chemical binders/retainers and have a heating value of approximately 5 KW/h. In addition, wood pellets can be stocked and used by individuals when needed. Therefore, in times of energy crisis, wood pellets have the potential to be a component of energy security (Oral, 2022).

Wood pellets are the fastest growing type of bioenergy feedstock. Global wood pellet production has steadily increased, from about 18 million metric tons in 2012 to 47.586 million metric tons in 2022. According to 2022 data, Europe's wood pellet production is estimated at 24.878 million metric tons, while that of North America is estimated at 13.374 million metric tons. Along with production, growth in wood pellet exports continued in 2022. According to FAOSTAT data, the value of wood pellets exported worldwide in 2022 was US\$ 6.343 billion. Approximately 24.3% of the world's total wood pellet exports are from the USA (US\$ 1.545 billion), followed by Vietnam (US\$ 791 million) and Canada (US\$ 532 million).

Wood pellets, as a renewable energy source, are a current subject of interest to scientific researchers. Consequently, the number of scientific articles on wood pellets has increased exponentially. Bibliometric analysis is important in enabling researchers to view this growing number of studies in a systematic manner and to draw up plans for their own research.

Bibliometric analysis is an approach that uses a range of quantitative methods to measure, track and analyze scientific literature. Bibliometric studies analyze and classify bibliographic material by framing representative summaries of existing literature (Donthu et al., 2020; Rojas-Sanchez et al., 2023). With bibliometric research, it can be determined how much work has been done in which areas and in which areas there are deficiencies. Thus, it guides scientists who plan to work in a particular field or subject area (Akıncı, 2020).

In this research, a bibliometric analysis and scientific mapping were made of 758 documents in the Web of Science (WOS) searched with the keywords "wood" and "pellets" and dated from 1980 to 2023. For scientific mapping, VOSviewer software, one of the most popular bibliometric tools, was used. Therefore, based on this research, the hot spots and trends in scientific research on wood pellets over more than 40 years will be summarized.

# Materials and methods

As presented in Fig. 1, scientific publications indexed in the Web of Science database were retrieved on March 13, 2024. First, publications with a combination of "wood" and "pellet" in the title were identified. As a result of the first search, 793 publications were found. Subsequently, publications from the year 2024 were excluded, as well as the following types of publications: meeting abstract, correction, editorial material, news item, book review, data paper, and note. After the filtering process, 758 publications were identified from the years 1980-2023. To enable the analysis of publications with VOSviewer software, they were exported in .txt format. VOSviewer software was used to analyze co-authorship, co-citation, co-occurrence, and themes. VOSviewer is a computer program developed by Van Eck and Waltman (2010) to create, visualize and explore bibliometric maps of studies, and is freely available to users (Van Eck, 2011). In this program, two standard weight attributes are applied: the "links attribute" and "total link strength attribute" (Yu et al., 2020).

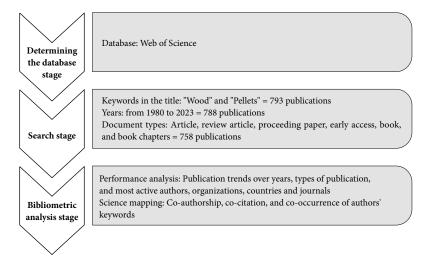



Fig. 1. Stages of research

## **Results**

# 1. Bibliometric analysis of publications and citations

As a result of the bibliometric query in Web of Science, 758 scientific publications were identified, consisting of 650 research articles, 105 proceeding papers, 19 review articles, and 25 other forms of publications including early access, book chapters, and a book. The oldest of these are publications titled "Wood-pulp fines or corn-silage as roughages in complete rations or a pelleted complete ration for young dairy replacements from birth through 18 weeks of age" and "Wood-pulp fines or corn-silage as roughages in complete rations or a pelleted complete ration for young dairy replacements 18 through 36 weeks of age," published in the *Journal of Dairy Science* in 1980 (Block and Shellenberger, 1980a; Block and Shellenberger, 1980b). Publications relating to wood pellets appeared in 286 journals, with a total of 2,294 authors working for 884 organizations from 75 countries. As presented in Table 2, publications in the field of wood pellets and the number of cited publications have constantly increased over the years. The year with the most publications on wood pellets was 2017 (71 publications), and the greatest number of citations was recorded for 2021 (2,056 citations). In total, there were 15,504 citations to publications in the field of wood pellets, of which 2,294 were authors' self-citations. The most cited publication was "Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets" published in the Journal of Atmospheric Environment in 2004, with 377 citations, as indicated in Table 3. Four of the top ten most cited publications were published in the journal Biomass and Bioenergy. There are 22 publications that have received more than 100 citations.

In addition, the degree of collaboration reflected in the publications was calculated using the following formula (1) (Subramanyam, 1983):

$$C = \frac{N_m}{N_m + N_s} \tag{1}$$

where:

C is the degree of collaboration in the discipline,  $N_m$  is the number of multi-authored documents,  $N_s$  is the number of single-authored documents. The C value was calculated as 0.97. The higher the C value, the higher the degree of collaboration.

# 2. Leading authors, organizations and countries

The top ten countries, organizations and authors producing publications on wood pellets are presented in Table 4. The author with the most publications

on wood pellets is Sokhansanj Shahab from the University of British Columbia; his 33 publications have been cited 982 times. The author with the largest number of citations per publication is Junginger Martin from Utrecht University, with 52.71. The only country to produce more than 100 publications in the field of wood pellets is the USA, and there are six countries whose publications have been cited more than 1,000 times. The University of British Columbia has produced 50 related publications, with 1,582 citations, followed by the United States Department of Energy and Oak Ridge National Laboratory. The three organizations that produced the most publications each accumulated more than 1000 citations.

# 3. Most active journals

A total of 287 journals published papers on wood pellets; of these, 258 published fewer than 5 articles, while 260 publications appeared in the top ten journals. The journal with the most publications in the field of wood pellets was *Biomass & Bioenergy*, with 49 publications, followed by *Fuel*, *Energy & Fuels*, and *Energies*. *Biomass & Bioenergy* was also the most cited journal, with 1531 citations, followed by *Energy & Fuels* and *Fuel*. There are six journals that have been cited more than 500 times. The journal with the largest number of citations per publication was *Atmospheric Environment*, with 106.2 (Table 5).

# 4. Co-authorship network visualization

Fig. 2A shows a network map of co-authors of relevant publications. On this map, the thicker the line between authors, the stronger the collaboration, while the bigger the node, the larger the number of publications. Each color represents a group. In creating the map, the minimum number of publications of an author was set at 5. It was observed that 45 authors passed this threshold, and the largest connected set consisted of seven authors. As presented in Fig. 2A, the authors are divided into two groups: Cluster 1 (red color, 4 authors), and Cluster 2 (green color, 3 authors). Sokhansanj Shabab, the author with the highest number of publications and total link strength, had the strongest collaboration link with Lim C. Jim.

The minimum number of documents of an organization was chosen as 5, and the network map showing the collaboration of 30 organizations is shown in Fig. 2B. The organization with the highest total link strength is Oak Ridge National Laboratory with 52. The number of its collaborators was 9, and its main collaborator was the University of British Columbia. However, the Swedish University of Agricultural Sciences has the largest number of collaborating organizations in the

Table 1. Main information about publications in the field of wood pellets from 1980 to 2023

| Description                  | Result |
|------------------------------|--------|
| Journals                     | 286    |
| Publications                 | 758    |
| Organizations                | 884    |
| Countries                    | 75     |
| Total citations              | 15504  |
| Self-citations               | 2181   |
| Research article             | 650    |
| Proceeding paper             | 105    |
| Review article               | 19     |
| Early access                 | 15     |
| Book chapters                | 9      |
| Book                         | 1      |
| Authors                      | 2294   |
| Single-authored publications | 26     |
| Multi-authored publications  | 732    |

Table 2. Annual numbers of publications on wood pellets and annual numbers of citations

| Year | Publications | Citations in WOS | Year | Publications | Citations in WOS |
|------|--------------|------------------|------|--------------|------------------|
| 1980 | 2            | 1                | 2002 | 1            | 5                |
| 1981 | 0            | 0                | 2003 | 4            | 11               |
| 1982 | 0            | 0                | 2004 | 7            | 15               |
| 1983 | 0            | 0                | 2005 | 3            | 23               |
| 1984 | 2            | 0                | 2006 | 4            | 30               |
| 1985 | 0            | 0                | 2007 | 8            | 38               |
| 1986 | 1            | 0                | 2008 | 15           | 72               |
| 1987 | 0            | 0                | 2009 | 17           | 115              |
| 1988 | 1            | 0                | 2010 | 23           | 113              |
| 1989 | 1            | 1                | 2011 | 34           | 244              |
| 1990 | 0            | 1                | 2012 | 30           | 362              |
| 1991 | 1            | 1                | 2013 | 35           | 390              |
| 1992 | 0            | 1                | 2014 | 50           | 609              |
| 1993 | 0            | 2                | 2015 | 51           | 790              |
| 1994 | 0            | 1                | 2016 | 56           | 959              |
| 1995 | 0            | 0                | 2017 | 71           | 1104             |
| 1996 | 1            | 6                | 2018 | 67           | 1395             |
| 1997 | 3            | 4                | 2019 | 59           | 1405             |
| 1998 | 1            | 3                | 2020 | 58           | 1755             |
| 1999 | 0            | 4                | 2021 | 59           | 2056             |
| 2000 | 1            | 5                | 2022 | 49           | 1951             |
| 2001 | 2            | 8                | 2023 | 41           | 1813             |

Table 3. The 10 most cited publications on wood pellets according to WOS (1980–2023)

| Publication title                                                                                                        | Journal                                        | Number<br>of citations<br>in WOS | References                |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|---------------------------|
| Emission characteristics of modern<br>and old-type residential boilers fired<br>with wood logs and wood pellets          | Atmospheric Environment                        | 377                              | Johansson et al. 2004     |
| Factors affecting wood, energy grass and straw pellet durability – A review                                              | Renewable & Sustainable<br>Energy Reviews      | 198                              | Whittaker and Shield 2017 |
| The European wood pellet markets: current status and prospects for 2020                                                  | Biofuels Bioproducts<br>& Biorefining – BIOFPR | 182                              | Sikkema et al. 2011       |
| Heating values of wood pellets from different species                                                                    | Biomass & Bioenergy                            | 166                              | Telmo and Lousada 2011    |
| Effect of wood fuel on the emissions from a top-feed pellet stove                                                        | Energy & Fuels                                 | 166                              | Sippula et al. 2007       |
| Slagging tendencies of wood pellet ash during combustion in residential pellet burners                                   | Biomass & Bioenergy                            | 161                              | Öhman et al. 2004         |
| Life Cycle Emissions and Cost of Producing<br>Electricity from Coal, Natural Gas,<br>and Wood Pellets in Ontario, Canada | Environmental Science<br>& Technology          | 159                              | Zhang et al. 2010         |
| An environmental impact assessment of exported wood pellets from Canada to Europe                                        | Biomass & Bioenergy                            | 150                              | Magelli et al. 2009       |
| Wood pellet production costs under<br>Austrian and in comparison to Swedish<br>framework conditions                      | Biomass & Bioenergy                            | 148                              | Thek and Obernberger 2004 |
| Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study                 | Applied Energy                                 | 147                              | Erlich and Fransson 2011  |

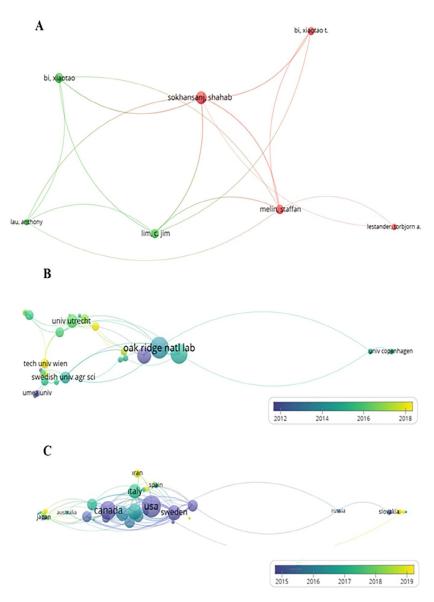
area of wood pellets, with 10 organizations. In recent years, the most active organizations have been North Carolina State University, Technical University Wien, and Technical University Denmark.

Publications in the field of wood pellets have been produced by authors from six different continents. The minimum number of documents of an author was chosen as 5, and the largest set of connected countries consists of 37 countries. As presented in Fig. 2C, the five countries with the highest number of publications, number of citations and total link strength were the USA, Canada, Germany, Sweden and Italy; the total link strengths of these countries are 101, 72, 51, 49 and 43, respectively. The USA and Sweden are the countries that collaborate the most with other countries in studies on wood pellets, with 17 links. The USA had the strongest collaboration with Canada, while Sweden had the strongest

collaboration with the USA. The most active countries in studies of wood pellets in recent years have been Egypt and Brazil.

# 5. Co-citation network visualization

Another important analysis is the co-citation analysis of the publications. In co-citation analysis, a link is created between two publications if they were cited by the same study. It is one of the most effective and common tools used to identify studies of central importance in scientific research in a specific field (Zitt and Bassecoulard, 1994). In Fig. 3A, a network map of the most frequently co-cited references in the wood pellets literature is presented. The network map was created with 31 references that were cited at least 20 times from a total of 19,107 cited references. The most frequently cited references in the wood pellets


Table 4. The ten authors, countries and institutions with the most publications related to wood pellets

| Authors                                     | Number of publications | Number of citations in WOS    |  |
|---------------------------------------------|------------------------|-------------------------------|--|
| Sokhansanj Shahab                           | 33                     | 982                           |  |
| Bi Xiaotao                                  | 30                     | 773                           |  |
| Lim Choon Jim                               | 23                     | 786                           |  |
| Melin Staffan                               | 19                     | 846                           |  |
| Junginger Martin                            | 14                     | 738                           |  |
| Hopke Philip                                | 11                     | 259                           |  |
| Jandacka Jozef                              | 10                     | 99                            |  |
| Toscano Giuseppe                            | 9                      | 304<br>98<br>145<br>69<br>190 |  |
| Holubcik Michal                             | 9                      |                               |  |
| *Lau Anthony K.                             | 8                      |                               |  |
| *Scherer Viktor                             | 8                      |                               |  |
| *Berghel Jonas                              | 8                      |                               |  |
| *Yazdanpanah Fahimeh                        | 8                      | 66                            |  |
| Countries                                   | Number of publications | Number of citations in WOS    |  |
| USA                                         | 141                    | 3355                          |  |
| Sweden                                      | 85                     | 3152                          |  |
| Canada                                      | 80                     | 2538                          |  |
| Germany                                     | 59                     | 1321                          |  |
| Italy                                       | 50                     | 1324                          |  |
| South Korea                                 | 40                     | 460                           |  |
| England                                     | 35                     | 1226                          |  |
| Poland                                      | 35                     | 205                           |  |
| Finland                                     | 32                     | 854                           |  |
| People's Rep. China                         | 32                     | 837                           |  |
| Organizations                               | Number of publications | Number of citations in WOS    |  |
| University of British Columbia              | 50                     | 1582                          |  |
| United States Department of Energy          | 43                     | 1418                          |  |
| Oak Ridge National Laboratory               | 34                     | 1201                          |  |
| Swedish University of Agricultural Sciences | 23                     | 565                           |  |
| Utrecht University                          | 16                     | 687                           |  |
| Delta Research Corporation                  | 14                     | 485                           |  |
| Umea University                             | 14                     | 696                           |  |
| University of Georgia                       | 14                     | 296                           |  |
| University System of Georgia                | 14                     | 296                           |  |
| *Clarkson University                        | 12                     | 265                           |  |
| *Karlstad University                        | 12                     | 337                           |  |
| *North Carolina State University            | 12                     | 234                           |  |

<sup>\*</sup>Equal number of publications

Table 5. The ten journals with most numerous and most cited publications on wood pellets

| Journal                                | Number of publications | Journal                                    | Number of citations in WOS |
|----------------------------------------|------------------------|--------------------------------------------|----------------------------|
| Biomass & Bioenergy                    | 49                     | Biomass & Bioenergy                        | 1531                       |
| Fuel                                   | 42                     | Energy & Fuels                             | 1105                       |
| Energy & Fuels                         | 37                     | Fuel                                       | 993                        |
| Energies                               | 33                     | Applied Energy                             | 599                        |
| Fuel Processing Technology             | 22                     | Fuel Processing Technology                 | 533                        |
| Renewable Energy                       | 19                     | Atmospheric Environment                    | 531                        |
| Applied Energy                         | 17                     | Renewable & Sustainable Energy<br>Reviews  | 394                        |
| Energy                                 | 17                     | Biofuels Bioproducts & Biorefining Journal | 385                        |
| Renewable & Sustainable Energy Reviews | 12                     | Energy                                     | 243                        |
| Forest Products Journal                | 12                     | Renewable Energy                           | 235                        |



 $\textbf{Fig. 2.} \ \ \text{Co-authorship maps of authors (A), organizations (B), and countries (C)}$ 

literature formed three clusters: Cluster 1 (red color, 16 references), Cluster 2 (green color, 8 references), and Cluster 3 (blue color, 7 references). The reference with the highest total link strength (171) was the study titled "Emission of hexanal and carbon monoxide from storage of wood pellets, a potential occupational and domestic health hazard" published by Svendberg et al. (2004) in Annals of Occupational Hygiene, followed by the papers of Svendberg et al. (2008) and Kuang et al. (2008). Interestingly, the three publications with the highest link strengths are all published in the journal Annals of Occupational *Hygiene*, whereas the total link strength of the study published by Kaliyan and Morey (2009) in Biomass and Bioenergy, which has the highest number of citations, is not very high.

While preparing their studies, researchers primarily refer to scientific publications published in field journals. Therefore, it is very important to determine the most referenced journals in a field. For this purpose, an analysis of co-citation of sources was conducted (Fig. 3B). With this analysis, co-cited journals in the bibliographies of publications in the field of wood pellets are identified. The network map was created with 75 journals that were cited at least 30 times from a total

of 9,158 journal citations. The journal with the highest number of citations (1641) and total link strength (30,425) is *Biomass & Energy*, followed by *Fuel*, *Energy Fuel* and *Full Process Technology*. The journals with the strongest co-citation links with *Biomass & Bioenergy* were *Fuel* and *Energy Fuel*, although it had such links with 73 different journals. The impact factor of the journal in 2022 was 6, and it is ranked Q1 in the agricultural engineering category according to 2022 JCR data. In terms of impact factor, *Biomass & Bioenergy* is ranked second out of 14 journals in the agricultural engineering category.

# 6. Keyword analysis and trending topics

Fig. 4A depicts an analysis of the co-occurrence of keywords listed by the authors in publications on wood pellets. In this analysis, the minimum number of occurrences of a keyword was 5, and 76 keywords passing this threshold were identified from a total of 1,827 keywords. The keyword that appeared most was "wood pellets" (total link strength 207), which has a strong link to biomass and bioenergy. In addition, this keyword had connections with 61 different keywords. The other keywords with total link

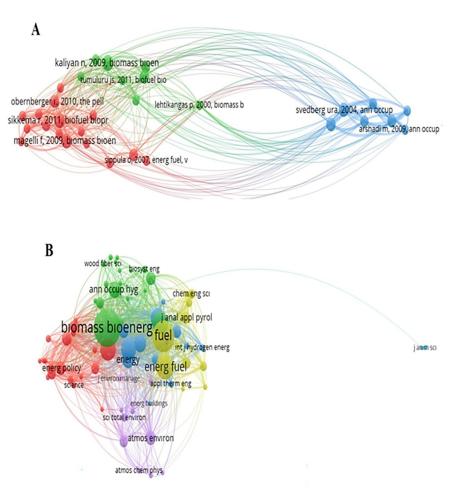



Fig. 3. Co-citation maps of references (A) and sources (B)

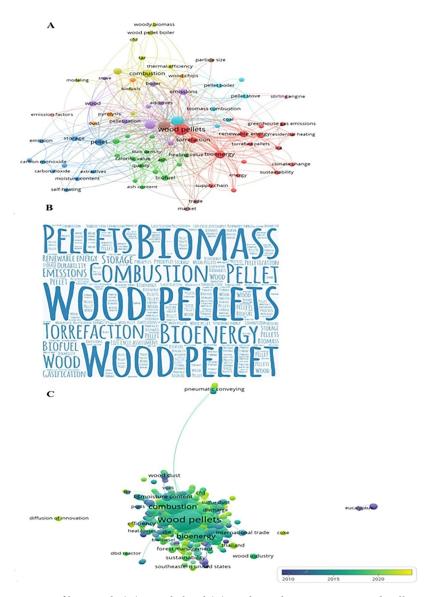



Fig. 4. Co-occurrence of keywords (A), word cloud (B), and trending topics in wood pellets in 2010–2023 (C)

strengths of more than 100 were "biomass", "wood pellet" and "combustion". A word cloud was also created to show the frequency of the keywords which occurred more than 10 times (Fig. 4B). After the keyword "wood pellets", the most frequently used authors' keywords other than the search keywords were "biomass", "wood pellet", "combustion", "pellets" and "bioenergy". Fig. 4C indicates which keywords have appeared more in studies on wood pellets in recent years. The dark colors represent old topics, whereas the lighter colors represent recently discussed topics. Trending topics in recent years include micro computed tomography, peanut shells, spent coffee grain, sugarcane leaves, levoglucosan, phthalates, lignocellulosic anaerobic digestion residues, marine plastic wastes, refuse plastic fuel, tars, diesel, renewable energy sources, sustainable energy, solar drying, co-pyrolysis, woodchips, biofuel pellets, quality pellet, carbon oxides, and lignin bridges.

# Discussion

Due to factors such as global warming, climate change, and environmental pollution, the demand for wood pellets as an alternative to fossil fuels is constantly increasing. In recent years, there has been a noticeable increase in the number of academic publications focusing on wood pellets, reflecting a broader interest in renewable energy solutions. This trend can be attributed to several interconnected factors, most notably the global urgency of addressing climate change and reducing greenhouse gas emissions (IPCC, 2021). As countries seek alternatives to fossil fuels, wood pellets have emerged as a promising bioenergy source, often promoted as a carbon-neutral option when produced and consumed sustainably (Berndes et al., 2016). For example, pellets produced from agricultural residues help reduce greenhouse gas emissions (Rodino et al., 2024). Beyond environmental concerns, issues

of energy security, economic viability, and the role of sustainable forest management also contribute to the expanding body of literature (Dwivedi et al., 2014; Lamers et al., 2014). However, evaluating this research in terms of quality and quantity and obtaining valuable information about the studies will be beneficial for future researchers.

Approximately 75% of the publications on wood pellets have been produced in the last decade. The present study is the first published bibliometric analysis of the literature on wood pellets. Since pellets are a form of biomass energy, that is, a fuel originating from renewable energy, bibliometric studies in the fields of bioenergy and renewable energy can be compared. Ferrari et al. (2020) performed a bibliometric analysis on the themes of biomass and bioenergy via the Scopus database. Similarly to our study, they found that publications per year in the bioenergy subject field have grown. Also, Rosokhata et al. (2021) made a bibliometric analysis of publications on renewables, and examined a total of 2000 registered studies on WOS. They indicated that the majority of publications were produced after 2010. There are other analyses showing that studies on biomass, bioenergy, renewable energy, the properties of pellets, trade in pellets, and the quality control of pellets have gained in importance in recent years (Mao et al., 2018; Kamperidou, et al., 2018; Schön et al., 2019; Szyszlak-Bargłowicz et al., 2020; Yuan et al., 2022; Kamperidou, 2022; Helal et al., 2023; Seminario-Cordova and Rojas-Ortega, 2023; Kut and Pietrucha-Urbanik, 2024; Waragai, 2024).

The analysis by country shows that eight of the ten countries that conduct the most research on wood pellets are in North America and Europe. In a study on renewable energy sources by Jabeen et al. (2021), it was found that research collaborations occurred especially in the USA and European countries. North America is one of the most important wood pellet producing regions. Nine of the ten largest wood pellet exporting countries are North American and European. Therefore, it has been determined that there is a significant relationship between the numbers of publications from particular countries and their levels of wood pellet production and exports.

Regarding the scientific journals contributing the most to the literature on wood pellets, it has been observed that wood pellet studies are published in journals in the fuel and energy areas, with high impact factors, such as *Biomass and Bioenergy*, *Fuel*, *Energies*, *Renewable Energy*, and *Applied Energy*. In other bibliometric studies on bioenergy, biomass energy and renewable energy, Azevedo et al. (2019), Perea-Moreno et al. (2019), Zhang et al. (2021), Sertolli et al. (2022), Obileke et al. (2022), and Yuan et al. (2022) found that studies on these subjects were published in journals in the energy area with high impact factors, and the results are similar to those obtained in this study.

# **Conclusions**

This research provides an objective overview of the literature on wood pellets. In general, the bibliometric analysis indicates that studies on wood pellets are multidisciplinary in nature and have developed especially in recent years. Based on 758 academic publications on wood pellets produced between 1980 and 2023, it was found that the number of publications on this topic increased steadily, with 2018 being the year with the largest number of wood pellets publications.

Authors use citations in academic publications to demonstrate to their readers that the material they write has previously been scientifically proven, and citations reflect the quality of a publication. In total, there were 15,504 citations to publications in the field of wood pellets, and 22 publications in this field received more than 100 citations. The ten most frequently cited publications were written by a total of 42 authors from 12 different countries. The most cited publication was produced by six authors from Sweden. The majority of publications in this field are produced by two or more authors.

When the author addresses of publications on wood pellets were analyzed, it was observed that the researchers were mostly from the USA, Sweden, and Canada.

The bibliometric analysis in this study showed that studies on wood pellets were generally published in energy and fuel journals, and that there were not many studies on this topic in forest products journals. Overall, the impact factors of the journals publishing the most studies on wood pellets are quite high.

In the analysis of co-occurrence of keywords, the keyword "wood pellets" was most frequently used together with the words "bioenergy" and "biomass". Additionally, studies on wood pellets are generally conducted in the energy fuel, engineering, science technology, environmental science, and agriculture subject areas; there are 89 studies on wood pellets in the agriculture area.

The present research is limited to the Web of Science database. Other relevant databases such as Scopus, Pubmed and Medline have been excluded. New researchers are therefore also able to perform analyses of relevant research, especially in the Scopus databases, and to compare the results with those of this study. Moreover, studies can be carried out using different software programs such as Citespice, Gephi, Bibeexcel, Scimat, and Biblioshiny to visualize the data obtained in bibliometric analyses.

There have been previous bibliometric analyses of studies on biomass, bioenergy and renewable energy, but there are no existing reports on the bibliometric evaluation of wood pellet studies. The present study thus fills a gap in the literature. It may also provide guidance to researchers planning to study wood pellets in the future.

# **Conflict of interest**

The author(s) declare(s) that there is no conflict of interest concerning the publication of this article.

#### References

- **Akıncı, A., 2020.** Bibliometric Analysis of Graduate Thesis Regarding "Coup" Written in Turkey, International Journal of Society Researches, 16, 28, 1129-1153.
- Azevedo, S.G., Santos, M., and Anton, J.R., 2019. Supply Chain of Renewable Energy: A Bibliometric Review Approach, Biomass and Bioenergy, 126, 70-83.
- Berndes, G., Abt, B., Asikainen, A., Cowie, A., Dale, V., Egnell, G., Lindner, M., Marelli, L., Pare, D., Pingoud, K., Yeh, S., 2016. Forest Biomass, Carbon Neutrality and Climate Change Mitigation, From Science to Policy 3, European Forest Institute.
- Block, E., and Shellenberger, P.R., 1980a. Wood-Pulp Fines or Corn-Silage as Roughages in Complete Rations or a Pelleted Complete Ration for Young Dairy Replacements From Birth through 18 Weeks of Age, Journal of Dairy Science, 63, 12, 2060-2070.
- Block, E., and Shellenberger, P.R., 1980b. Wood-Pulp Fines or Corn-Silage as Roughages in Complete Rations or a Pelleted Complete Ration for Young Dairy Replacements 18 through 36 Weeks of Age, Journal of Dairy Science, 63, 12, 2071-2079.
- **Donthu, N., Kumar, S., and Pattnaik, D., 2020.** Forty-five Years of Journal of Business Research: A Bibliometric Analysis, Journal of Business Research, 109, 1-14.
- Dwivedi, P., Khanna, M., Bailis, R., & Ghilardi, A., 2014.
  Potential Greenhouse Gas Benefits of Transatlantic
  Wood Pellet Trade, Environmental Research Letters,
  9, 2, 024007.
- **Erlich, C., and Fransson, T.H., 2011**. Downdraft Gasification of Pellets Made of Wood, Palm-Oil Residues Respective Bagasse: Experimental Study, Applied Energy, 88, 3, 899-908.
- Ferrari, G., Pezzuolo, A., Nizami, A.S., and Marinello, F., 2020. Bibliometric Analysis of Trends in Biomass for Bioenergy Research, Energies, 13, 1-21.
- Helal, M.A., Anderson, N., Wei, Y., and Thompson, M., 2023. A Review of Biomass-To-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization, Energies, 16, 1187.
- **IPCC., 2021.** Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
- Jabeen, S., Malik, S., Khan, S., Khan, N., Qureshi, M.I., and Md Saad, M.S., 2021. A Comparative Systematic Literature Review and Bibliometric Analysis on Sustainability of Renewable Energy Sources, International Journal of Energy Economics and Policy, 11, 1, 270-280.

- Johansson, L.S., Leckner, B., Gustavsson, L., Cooper, D., Tullin, C., and Potter A., 2004. Emission Characteristics of Modern and Old-Type Residential Boilers Fired with Wood Logs and Wood Pellets, Atmospheric Environment, 38, 25, 4183-4195.
- Kaliyan, N., and Morey, R.V., 2009. Factors Affecting Strength and Durability of Densified Biomass Products, Biomass & Bioenergy, 33, 337-359.
- **Kamperidou, V., 2022.** Quality Analysis of Commercially Available Wood Pellets and Correlations between Pellets Characteristics, Energies, 15, 8, 2865.
- Kamperidou, V., Lykidis, C., Barmpoutis, P., 2018. Utilization of Wood and Bark of Fast-Growing Hardwood Species in Energy Production, Journal of Forest Science, 64, 4, 164–170.
- Kuang, X., Shankar, T.J., Bi, X.T., Sokhansanj, S., Lim, C.J., and Melin, S., 2008. Characterization and Kinetics Study of Off-Gas Emissions from Stored Wood Pellets, The Annals of Occupational Hygiene, 52, 8, 675–683,
- **Kut, P., and Pietrucha-Urbanik, K., 2024.** Bibliometric Analysis of Renewable Energy Research on the Example of the Two European Countries: Insights, Challenges, and Future Prospects, Energies, 17, 1,176.
- Lamers, P., Junginger, M., Hamelinck, C., Faaij, A., 2012. Developments in International Solid Biofuel Trade-An Analysis of Volumes, Policies, and Market Factors, Renewable and Sustainable Energy Reviews, 16, 3176-3199.
- Magelli, F., Boucher, K., Bi, H.T., Melin, S., and Bonoli, A., 2009. An Environmental Impact Assessment of Exported Wood Pellets from Canada to Europe, Biomass & Bioenergy, 33, 3, 434-441.
- Mao, G., Huang, N., Chen, L., and Wang, H., 2018. Research on Biomass Energy and Environment from the Past to The Future: A Bibliometric Analysis, Science of The Total Environment, 635, 1081-1090.
- Mao, G., Zou, H., Chen, G., Du, H., and Zuo, J., 2015.
  Past, Current and Future of Biomass Energy Research:
  A Bibliometric Analysis, Renewable and Sustainable Energy Reviews, 52, 1823-1833.
- Obileke, K., Onyeaka, H., Omoregbe, O., Makaka, G., Nwokolo, N., and Mukumba, P., 2022. Bionergy Frombio-Waste: A Bibliometric Analysis of The Trend In Scientific Research From 1998-2018, Biomass Conversion and Biorefinery, 12, 1077-1092.
- Oral, M. 2022. An Important Opportunity for Türkiye in Biomass Energy Use: Wood Pellet, In: Çiftçi, E., and Doğar, M. (eds.), Selected Topics in Social Sciences-9, İksad Publishing House, 108-128.

- Öhman, M., Boman, C., Hedman, H., Nordin, A., and Boström, D., 2004. Slagging Tendencies of Wood Pellet Ash during Combustion in Residential Pellet Burners, Biomass & Bioenerg, 27, 6, 585-596.
- Perea-Moreno, M.A., Sameron-Manzano, E., and Perea-Moreno, A.J., 2019. Biomass as Renewable Energy: Worldwide Research Trends, Sustainability, 11, 863.
- Rodino, S., Voicila, D.N., Sterie, C.M., 2024. The Use of Forestry and Agricultural Biomass in the Production of Pellets. In: Proceedings of the 18th International Conference on Business Excellence (ICBE), Bucharest, Romania, 955-964.
- Rojas-Sánchez, M.A., Palos-Sánchez, P.R., and Folgado-Fernández, J.A., 2023. Systematic Literature Review and Bibliometric Analysis on Virtual Reality and Education, Education and Information Technologies, 28, 155–192.
- Rosokhata, A., Minchenko, M., Khomenko, L., and Chygryn, O., 2021. Renewable Energy: A Bibliometric Analysis. In: 1st Conference on Traditional and Renewable Energy Sources: Perspectives and Paradigms for the 21st Century (TRESP 2021), Prague, Czech Republic, 1-11.
- Saletnik, B., Saletnik, A., Zaguła, G., Bajcar, M., and Puchalski, C., 2022. The Use of Wood Pellets in the Production of High Quality Biocarbon Materials, Materials, 15, 13, 4404.
- **Saraçoğlu, N., 2010**. Global Climate Change, Bioenergy and Energy Forestry, Efil Publishing House, 696.
- Schön, C., Mack, R., Hartmann, H., 2019. Quality Assessment of Wood Pellets for Residential Heating Systems and Combustion Behaviour in A Pellet Stove. In: Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 667-672.
- Seminario-Córdova, R., and Rojas-Ortega, R., 2023. Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years, Sustainability, 15, 13, 10499.
- Sertolli, A., Gabnai, Z., Lengyel, P., and Bai, A., 2022. Biomass Potential and Utilization in Worldwide Research Trends-A Bibliometric Analysis, Sustainability, 14, 9, 5515.
- Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen, M.T., and Faaij, A.P.C., 2011. The European Wood Pellet Markets: Current Status and Prospects for 2020, Biofuels Bioproducts & Biorefining-BIOFPR, 5, 3, 250-278.
- Sippula, O., Hytönen, K., Tissari, J., Raunemaa, T., and Jokiniemi, J., 2007. Effect of Wood Fuel on the Emissions from a Top-Feed Pellet Stove, Energy & Fuels, 21, 2, 1151-1160.
- **Subramanyam, K., 1983**. Bibliometric Studies of Research Collaboration: A Review, Journal of Information Science, 6, 1, 33-38.
- Sungur, B., Topaloğlu, B., and Özbey, M., 2018. Investigation on the Thermal Performance and Emissions of Pellet-Fuelled Combustion Systems, Engineer and Machinery, 59, 693, 64-84.

- Svendberg, U.R.A., Högberg, H.E., Högberg, J., and Galle, B., 2004. Emission of Hexanal and Carbon Monoxide from Storage of Wood Pellets, a Potential Occupational and Domestic Health Hazard, The Annals of Occupational Hygiene, 48, 4, 339-349.
- Svendberg, U.R.A., Samuelsson, J., and Melin, S., 2008. Hazardous Off-Gassing of Carbon Monoxide and Oxygen Depletion during Ocean Transportation of Wood Pellets, The Annals of Occupational Hygiene, 52, 4, 259-266.
- Szyszlak-Bargłowicz, J., Zając, G., Hawrot-Paw, M., Koniuszy, A., 2020. Evaluation of the Quality of Wood Pellets Available on the Market, E3S Web of Conferences, 171, 01015.
- **Telmo, C., and Lousada, J., 2011**. Heating Values of Wood Pellets from Different Species, Biomass & Bioenergy, 35, 7, 2634-2639.
- **Thek, G., and Obernberger, I., 2004.** Wood Pellet Production Costs under Austrian and in Comparison to Swedish Framework Conditions, Biomass & Bioenergy, 27, 6, 671-693.
- Van Eck, N.J., 2011. Methodological Advances in Bibliometric Mapping of Science, PhD thesis, Erasmus University, Rotterdam, Netherlands.
- Van Eck, N.J., and Waltman, L., 2010. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping, Scientometrics, 84, 523-538.
- Waragai, H., 2024. Economic Studies of the Global Trade of Wood Pellets, Master thesis, Purdue University, West Lafayette, Indiana.
- Whittaker, C., and Shield, I., 2017. Factors Affecting Wood, Energy Grass and Straw Pellet Durability: A Review, Renewable & Sustainable Energy Reviews, 71, 1-11.
- Yuan, R., Pu, J., Wu, D., Wu, Q., Huhe, T., Lei, T., and Chen Y., 2022. Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis, International Journal of Environmental Research and Public Health, 19, 23, 15881.
- Yu, Y., Li, Y., Zhang, Z., Gu, Z., Zhong, H., Zha, Q., Yang, L., Zhu, C., and Chen, E., 2020. A Bibliometric Analysis Using Vosviewer of Publications on COVID-19, Annals of Translational Medicine, 8, 13, 1-11.
- Zengin, Y., Efendioğlu Çelik, A., Dok, M., Çolak, S., Kardigan, A.I., Çakır, A., and Semercioğlu, A., 2020. The Investigation of the Feasibility of the Utilization of Forest Wastes as Pellet Resources, Turkish Journal of Forestry Research, 7, 2,113-119.
- Zhang, Y.M., Mckechnie, J., Cormier, D., Lyng, R., Mabee, W., Ogino, A., and MacLean, H.L., 2010. Life Cycle Emissions and Cost of Producing Electricity from Coal, Natural Gas, and Wood Pellets in Ontario, Canada, Environmental Science & Technology, 41, 1, 538-544.
- Zhang, Y., Yu, Q., and Li, J., 2022. Bioenergy research Under Climate Change: A Bibliometric Analysis from

- a Country Perspective, Environmental Science and Pollution Research, 28, 26427-26440.
- **Zitt, M., and Bassecoulard, E., 1994**. Development of a Method for Detection and Trend Analysis of Research Fronts Built By Lexical or Cocitation Analysis, Scientometrics, 30, 333-351.