ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Construction is responsible for a significant impact on environmental pollution, depending on the source, it is about 40% of global carbon dioxide emissions (Global Alliance for Building and Construction; International Energy Agency 2019). Due to increasing restrictions related to CO2 emissions, every sector, including construction, are obliged to look for solutions that reduce their impact on the environment. At each stage of the LCA analysis of a building, solutions can be sought leading to the reduction of parameters. In the following text, the emphasis is placed on the early stages such as the selection of construction material and the technology of creation. The results of GWP analyses for a small modular building in two structural variants: steel and timber, and the amount of building materials in the building made in traditional and modular technology were compared. Analyses showed a significant reduction in the GWP value due to the use of timber construction.
REFERENCES (31)
1.
Al-Najjar A., Dodoo A. [2023] Modular multi-storey construction with cross-laminated timber: Life cycle environmental implications, Wood Material Science & Engineering, DOI: 10.1080/17480272.2022.2053204.
 
2.
Al-Sherrawi, M. H., Lyashenko, V., Edaan, E. M., & Sotnik, S. [2018] International Journal of Civil Engineering and Technology (IJCIET), 9(6), 437–446. Article ID: IJCIET_09_06_051. Available online at http://www.iaeme.com/ijciet/is.... ISSN Print: 0976-6308 and ISSN Online: 0976-6316.
 
3.
Almeidaa R., Chavesb L., Silvac M., Carvalhoc M., Caldasa L. [2023] Integration between BIM and EPDs: Evaluation of the main difficulties and proposal of a framework based on ISO 19650:2018 DOI: https://doi.org/10.1016/j.jobe....
 
4.
Athre, R. S., & González-García, S. [2014] Life cycle assessment (LCA) of wood-based building materials. In Wooden building products in comparative LCA: A literature review. Elsevier. https://doi.org/10.1533/978085....
 
5.
Azhar S. [2010] BIM for sustainable design: results of an industry survey, J. Build. Inform. Model. 4 (1) 27–28.
 
6.
Baran W. [2013] Konserwacja i restauracja wież katedry opolskiej, Wydział Budownictwa, Politechnika Opolska.
 
7.
Chen C. X., Pierobon, F., & Ganguly, I. [2019] Life cycle assessment (LCA) of cross-laminated timber (CLT) produced in Western Washington: The role of logistics and wood species mix. Sustainability, 11(1278). https://doi.org/10.3390/su1105....
 
8.
Chen Z., Chen L., Zhou X1, Huang L., Sandanayake M., and Yap P. [2024] Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review. DOI: https://doi.org/10.3390/su1603....
 
9.
Fürtner, D., Perdomo, E. A., Schwarzbauer, P. [2021] Life cycle assessment of agricultural wood production—Methodological options: A literature review. BioEnergy Research, 14, 492–509. https://doi.org/10.1007/s12155....
 
10.
Hemmati, M., Messadi, T., & Gu, H. [2022] Life cycle assessment of cross-laminated timber transportation from three origin points. Sustainability, 14(336). https://doi.org/10.3390/su1401....
 
11.
Juraszek J. Chybiński M. [2020] Materiały, nowoczesne technologie, realizacje konstrukcji stalowej [Chapter 1].
 
12.
Kogler, C., Beiglböck, A., & Rauch, P. [2024] Empirical insights into salvage wood logistics. Croatian Journal of Forest Engineering, 45(2272). https://doi.org/10.5552/crojfe....
 
13.
Kogler, C., Beiglböck, A., & Rauch, P. [2025] An empirical study of the resilience in Austrian wood transport. Institute of Production Economics and Logistics, University of Natural Resources and Life Sciences, Vienna, Feistmantelstrasse 4, Vienna 1180, Austria.
 
14.
Kogler, C. [2024] Innovative transport simulation for sustainable and resilient wood logistics. SNE Journal. https://doi.org/10.11128/sne.3....
 
15.
Kogler, C., Schimpfhuber, S., Eichberger, C., & Rauch, P. (2021). Benchmarking procurement cost saving strategies for wood supply chains. Forests, 12(8), 1086. https://doi.org/10.3390/f12081....
 
16.
Krawczyk J. [2010] Zabytkowa Stolarka we wnętrzach sakralnych i jej problematyka konserwatorska, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika Toruń.
 
17.
Kühmaier, M., Schweier, J., Sibiyaca, Z., Marchid, E., Laschie, A., & Grünberg, J. (2025). The connection between Sustainable Development Goals (SDGs) and forest operations research. International Journal of Forest Engineering. https://doi.org/10.1080/149421....
 
18.
Obrecht P., Potrč T., Rock M., Hoxha E., Passer A. [2020] BIM and LCA integration: a systematic literature review, Sustainability 12 (14). https://doi.org/10.3390/su1214....
 
19.
Pelyukh, O., Ilkiv, M., Kiyko, O., Soloviy, I., Chelepis, T., & Lavnyy, V. [2025] Ecological footprint of wood-based products in the Ukrainian Carpathians region. Wood, 196630. https://doi.org/10.53502/wood-....
 
20.
Rasmussen F.N., Andersen C.E., Wittchen A., Hansen R.N., Birgisdottir H. [2011] Environmental Product Declarations of Structural Wood: A Review of Impacts and Potential Pitfalls for Practice, Buildings 2021, 11, 362.
 
21.
Rawska-Skotniczny A., Kuchta K. Tylek I. [2018] Przyczyny i metody zapobiegania błędom ludzkim w inżynierskiej działalności budowlanej. Część II: Błędy podczas wytwarzania, montażu i rozbiórki konstrukcji stalowych.
 
22.
Sariola L., Ilomaki A. [2016] RTS EPD's - Reliable Source of Environmental Information of Building Products in Finland, Conference: Build Green and Renovate Deep, Tallinn and Helsinki, DOI:10.1016/j.egypro.2016.09.104.
 
23.
Schweier, J., Magagnotti, N., Labelle, E. R., & Athanassiadis, D. (2019). Sustainability impact assessment of forest operations: A review. Current Forestry Reports, 5(2), 101–113. https://doi.org/10.1007/s40725....
 
24.
Sečkár, M., Schwarz, M., Pochyba, A., & Polgár, A. [2024] A comparative analysis of the environmental impacts of wood–aluminum window production in two life cycle assessment software. Sustainability, 16(9581). https://doi.org/10.3390/su1621....
 
25.
Shadra F., Johansson T. D., Lu W., Schade J., Olofsson T. [2016] An integrated BIM-based framework for minimizing embodied energy during building design, Energy and Buildings 128 (2016) 592–604. DOI: http://dx.doi.org/10.1016/j.en....
 
26.
Stepien, A., Piotrowski, J. Z., Munik, S., Balonis, M., Kwiatkowska, M., & Krechowicz, M. [2022] Sustainable Construction—Technological Aspects of Ecological Wooden Buildings. Energies, 15(23), 8823. https://doi.org/10.3390/en1523....
 
27.
Szewczyk J. [2019] Drewno we współczesnej architekturze. Część 3 „Plyscrapers”, Builder 268 (11). DOI: 10.5604/01.3001.0013.5352.
 
28.
Szumilas B. [2006] Wykonywanie połączeń elementów w konstrukcjach z drewna 311[32].Z6.02.
 
29.
Szurowa B. [1975] Drewniane budownictwo ludowe we wsi Kakonin w powiecie kieleckim.
 
30.
Werner, F., & Richter, K. [2007] Wooden building products in comparative LCA: A literature review. Environment & Development, Waffenplatzstrasse 89, 8002 Zurich, Switzerland.
 
31.
Ważny J., Kurpik W. [2005] Konserwacja drewna zabytkowego w Polsce.
 
eISSN:2956-9141
Journals System - logo
Scroll to top